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Abstract

In-context learning, introduced by Brown et al.,
2020, has been a popular way to adapt very
large language models to new tasks in lieu of
fine-tuning them. Despite its impressive ability
in improving the performance of large language
models on downstream tasks, relatively little
was understood about exactly why in-context
learning works. Min et al., 2022c is the first
attempt at empirically analyzing exactly what
aspects of the in-context demonstrations con-
tribute to improvements in downstream task
performance. However, their analysis is lim-
ited to multiple choice and classification tasks,
which only involve predicting a single token
from a fixed set of acceptable answers. In
this paper, we extend their analysis to question-
answering tasks, where the model needs to gen-
erate a free response. Consistent with the find-
ings of Min et al., 2022c, we find that the cor-
rect input-output mapping has negligible contri-
bution, while the output space has a significant
impact on the model performance.

1 Introduction

Large language models (LMs) have shown surpris-
ingly high performance on downstream tasks by
a technique called “in-context learning,” proposed
by Brown et al., 2020. Using this technique, an
LM learns a new task via inference alone by condi-
tioning on a concatenation of the training data as
demonstrations, without any gradient updates.

Despite being the focus of significant study since
its introduction, there has been relatively little work
done on understanding how and why in-context
learning works, and what aspects of the demonstra-
tions provided contribute to downstream task per-
formance. Understanding this is crucial in order to
determine how to best maximize the performance
gains of large language models on downstream
tasks over zero-shot inference.

Min et al., 2022c is the first paper (to the best
of our knowledge) that investigates why in-context

learning achieves performance gains over zero-shot
inference through an empirical analysis. They find
that, counter-intuitively, an LM does not rely on
input-label mappings in the demonstrations to per-
form the downstream task well, but relies more on
the demonstrations to learn the output space (i.e.,
the set of possible labels for classification tasks)
and distribution of inputs.

However, the analysis in Min et al., 2022c mainly
focuses on classification and multiple choice QA
tasks where the output space is relatively small.
Many other NLP tasks, such as open-domain QA
and summarization, have a much larger output
space, where outputs cannot be “in the same for-
mat” as those in the demonstrations. Investigating
what features of the demonstrations impact perfor-
mance on such more open-ended downstream tasks
is crucial to help us develop a more complete un-
derstanding of how and why in-context learning
works, not only for such more open-ended tasks
but also in general.

In this work, we aim to investigate what aspects
of the demonstrations provided to an LM affect its
in-context learning ability for downstream tasks
that have a much larger output space that does not
follow a particular format (unlike classification and
multiple choice QA). In our investigation, we plan
to focus on free response question-answering tasks.

2 Related work

Large language models have had a very strong per-
formance on a diverse range of downstream NLP
tasks (Devlin et al., 2019; Radford et al., 2019; Liu
et al., 2019; Raffel et al., 2020; Lewis et al., 2020).
In the past, fine-tuning has been the approach of
choice for adapting language models to a new task
(Devlin et al., 2019). However, fine-tuning a very
large language model such as GPT-3 is often too
expensive to be practical (Brown et al., 2020).

In-context learning, introduced by Brown et al.,
2020, has been a popular way to adapt very large



language models to new tasks in lieu of fine-tuning
them. In-context learning involves conditioning
the language model on a few pairs of input-output
examples provided as additional signal at inference
time without performing any gradient updates. Due
to the impressive improvement in the performance
of language models using in-context learning as op-
posed to performing zero-shot inference, in-context
learning has been a popular area of research in the
NLP community since its introduction in 2020.

Prior work has focused on better ways of orga-
nizing the in-context examples provided to the lan-
guage model at inference time, such as formulating
the problem better (Zhao et al., 2021; Holtzman
et al., 2021; Min et al., 2022a), selecting better
demonstrations (Liu et al., 2022; Lu et al., 2022;
Rubin et al., 2022), training models with an explicit
in-context learning objective (Chen et al., 2022;
Min et al., 2022b). Some works have reported the
over-sensitivity of the performance of the LMs on
the exact format of the demonstrations, exposing
the unpredictability of the in-context learning tech-
nique (Lu et al., 2022; Zhao et al., 2021; Mishra
et al., 2022). This unpredictability in the perfor-
mance of in-context learning indicates a lack of un-
derstanding in the field about what exactly makes
in-context learning work

Despite this gap in understanding, little work has
been done in the field on exactly why in-context
learning performs better than zero-shot inference,
and what, how, and why exactly is a large lan-
guage model able to learn from demonstrations
simply provided at inference time as in-context
examples. There is a theoretical approach to un-
derstand in-context learning as Bayesian inference
that uses demonstrations to recover latent concepts
(Xie et al., 2021). The performance of in-context
learning is also found to be associated with the term
frequencies in the pre-training data (Razeghi et al.,
2022).

Min et al., 2022c provides an empirical analy-
sis on what aspects of the input demonstrations
contribute to the improved performance of few-
shot learning over zero-shot inference. Counter-
intuitively, the input distribution and the output
space has a more significant effect on downstream
task performance than the mapping between the
ground-truth outputs and inputs. However, Min
et al., 2022c only discuss multiple choice and clas-
sification tasks, which only involve predicting a
single token from a fixed output space.

To our best knowledge, this paper is the first
approach to empirically analyze what aspects of
in-context learning contributes to the model perfor-
mance in open-ended tasks that involve generating
multiple tokens and where there is no fixed output
space. We find that the correct input-output map-
ping matters little. Instead, providing the correct
example outputs in randomly permuted order, or
choosing a random phrase within a context para-
graph, if there is one, as the example output per-
forms as well as standard few-shot learning. How-
ever, choosing random English words as the exam-
ple output performed no better, if not worse, than a
zero-shot setting.

3 Experimental Setup

Models. We experiment with three models, GPT-
2 (124M parameters), GPT-2 Large (774M) ac-
cessed through the Huggingface API (Radford
et al., 2019) and GPT-3 Curie (6.7B) accessed
through the OpenAI API (Brown et al., 2020),
which are all decoder-only dense models.

Datasets. We primarily focus on two datasets,
SQuAD (Rajpurkar et al., 2016) and Natural Ques-
tions (Kwiatkowski et al., 2019). SQuAD is a
popular question-answering dataset, where each
data point contains a context paragraph, a related
question, and an answer. Some questions may
require the existence of the context for an an-
swer. Natural Questions (NQ) is an open-domain
question-answering dataset, where the questions
are obtained from the search history of the Google
search engine, and answers are annotated by hu-
mans. There are long answers (typically a para-
graph) and short answers (a few words). In our
experiment, we primarily use the short answers for
evaluation.

Evaluation Metric. We use two metrics for eval-
uation: Exact Match accuracy (EM) and F1 score.
Let w(o) = w

(o)
1 · · ·w(o)

m be the output of the model
and G = {w(g)

1 , · · · ,w(g)
k } be the set of acceptable

gold answers. EM is computed as

EM(G,w(o)) = 1(w(o) ∈ G) (1)

Let w(g)
i = w

(g)
i,1 · · ·w(g)

i,ni
be one acceptable gold

answer. Then the precision is defined as pi = ci/ni

and the recall is defined as ri = ci/m where ci is
the number of words that appear both in the gold
answer w(g)

i and the output w(o). Then the F1 score



Figure 1: An example of in-context learning with k = 3 for the Natural Questions dataset. Demonstrations contain
k = 3 question-answer pairs. We want LM to generate correct answers to the question provided in test input.

is computed as

F1(G,w(o)) = max
1≤i≤k

2piri
pi + ri

(2)

During evaluation, we remove all punctuation
marks, articles, and whitespace from the output
and groudtruth text before finally converting it all
lowercase characters.

Other details. When evaluating few-shot per-
formance, we use k ∈ {1, 2, 4, 8, 16} demonstra-
tions for GPT-2 and GPT-2 Large models and
k ∈ {1, 2, 4} for GPT-3 model due to compute
budget. Each example is sampled uniformly at
random from the entire training data. We run the
experiments 3 times with different random seeds
and average the performance.

4 Methodology

In Figure 1, we illustrate the process of in-context
learning with an example. An LM is provided with
k example input-output pairs followed by the test
input and is asked to predict the test output.

Min et al., 2022c identified the following four
key components of in-context learning on multiple
choice and classification tasks: Format (F), La-
bel Space (L), Input Distribution (I), Input-Label
Mapping (M). Format refers to prepending each ex-
ample input and output with a identifiable marker
such as the word “Question:” or a newline charac-
ter “\n.” Label space refers to the set of acceptable
output tokens that are provided as a part of the
example output tokens. Input distribution refers
to distribution of the example input tokens, and
the input-label mapping refers to whether the gold
label was provided with each example input.

For classification and multiple choice tasks,
there is a fixed label space, but free response QA
tasks have an open output space. However, for the
case where there is a context paragraph, we still
conjecture that the set of tokens present in the con-
text serves a similar role as the output space. We
devise the following experiments to test the model
performance on settings where one or more of the
components of the demonstrations have been per-
turbed. Table 1 summarizes our experiments and
which component of in-context learning is being
tested against for each experiment.

4.1 Modifying Example Output
Changing the example output disrupts the input-
label mapping (M) and potentially also affects the
label space (L). We propose the following three
experiment settings:

(1) Permute: permute gold answers within in-
context demonstrations

(2) Random Word: replace the example output
with a random word

(3) Random String: replace the example output
with a random string with the same length as
the gold answer

When we permute the gold answers, the correct
answers are still present in the context window, so
we may state that the label space is partially pre-
served. When we choose a random word or string
as the answer for NQ, we choose each word as
a random vocabulary drawn uniformly at random
from the set of English words. Then the label space
is completely ignored. For SQuAD, we choose a



Figure 2: EM accuracy of GPT-2, GPT-2 Large, and GPT-3 on SQuAD with k = 1. The EM score is averaged over
3 random seeds.

random consecutive substring of the context para-
graph, and we understand this setting to be partially
preserving the label space.

4.2 Modifying Example Input
Changing the example input primarily affects the
input distribution (I). We propose the following two
experiments:

(1) Repeat: repeat one sentence from the context
paragraph multiple times

(2) Insert: insert one sentence consisting of ran-
dom words into the context paragraph

Both of these experiments assume the existence
of a context paragraph and are applicable only for
the SQuAD dataset. As some questions in the
SQuAD dataset are dependent on the context, we
chose to only augment the context with additional
information, instead of modifying or deleting con-
tent.

5 Experiment Results

We mainly present our results on GPT-2 Large and
GPT-3 models as we find the results on GPT-2 to be
significantly lower than GPT-2 Large and GPT-3,
with EM accuracy close to 0, as shown in Figure 2.
Any trend observed from the result of this model is
not expected to be statistically significant enough.

Experiment F L I M
Gold O O O O
Permute O △ O X
Random Output (NQ) O X O X
Random Output (SQuAD) O O O X
Repeat O O X X
Insert O O X X
No demonstration X X X X

Table 1: Table summarizing how each proposed experi-
ment affects each of the key components of in-context
learning

5.1 Modifying Example Output
The EM scores of the GPT-3 model on NQ with
k = 4 and on SQuAD with k = 2 demonstra-
tions are reported in Figure 3. The full result of
the experiments can be found in Appendix A. We
summarize some of the key findings as follows:

(1) On both tasks, using demonstrations with Gold
answers significantly improve the performance
over the zero-shot setting, consistent with the
findings of Min et al., 2022c.

(2) Permute barely hurts the performance. When
using GPT-3 on NQ, we even observe slight
performance gain when permuting the answers.

(3) For NQ, replacing gold answers with a Ran-



Figure 3: EM accuracy of GPT-3 model on NQ and SQuAD. The EM score is averaged over 3 random seeds.

dom word or a Random string drawn from
the English vocabulary hurts the model, offset-
ting any performance boost gained from the
demonstrations.

(4) For SQuAD, replacing gold answers with a
Random word or a Random string drawn
from the context paragraph does not hurt the
performance.

5.2 Modifying Example Input
We summarize some of the key findings as follows:

(1) Repeating one of the sentences of the context
paragraph, or Inserting a sentence of random
English words both do not hurt the model per-
formance.

(2) The model performance improves slightly
more for Insert than Repeat as k, the num-
ber of demonstrations, increases.

5.3 Ablations on k

We study the impact of the number of question-
answer pairs (k) in the demonstrations. Figure 4
shows the EM scores of the GPT-2 Large model
on NQ and SQuAD on k ∈ {1, 2, 4, 8, 16}. The
full result of the experiments can be found in Ap-
pendix A. We summarize some of the key findings
as follows:

(1) For SQuAD, using demonstrations in any
method outperforms the zero-shot setting in all
cases, except when applying Insert on k = 2.
In every method, the model performs best when
k = 16.

(2) For NQ, for Gold and Permute, we observe
a general performance increase when k in-
creases. However, for Random word or Ran-
dom string, the EM score does not increase
and the F1 score even drops as k increases.

6 Discussion & Conclusion

In this project, we study the role of different com-
ponents of demonstrations on the performance of
in-context learning on open-set generative question-
answering tasks. We find that the correct input-
output mapping has negligible contribution, while
the output space has a significant impact on the
model performance. When the model had access
to the gold example output, even if it was matched
with a wrong example input, or when the model
was given a hint that the example output should
be a substring of the context paragraph, the model
performed comparatively to the few-shot setting
with gold outputs.

One thing to note from the results is the dif-
ference in behavior when the number of demon-
stration examples (k) increases. For NQ, we hy-
pothesize that Random word and Random string
introduce too many out-of-distribution texts and ul-
timately hurt the model performance. Although In-
sert for SQuAD also introduces out-of-distribution
text, the in-distribution sentences from the context
paragraph are still take the majority control when
the model is asked to generate text.

6.1 Limitations and Future Work
In this paper, we have made an attempt at testing
the importance of each component of in-context
demonstrations on open-set generative tasks. How-
ever, the variety of the modifications we exper-
imented on were limited due to time and budget
constraints. As a follow-up, it would be worthwhile
to consider some of the following experiments:

(1) Intermix some strategies. For example, per-
mute some gold answers, while choosing a
random answer for the remaining examples.

(2) For SQuAD, choose random English words



Figure 4: EM accuracy of GPT-2 Large model on NQ and SQuAD. The EM score is averaged over 3 random seeds.

instead of choosing a random sentence from
the context paragraph

(3) For SQuAD, delete or modify some content
from the context paragraph

(4) For each gold answer, replace it only with an
answer with a similar semantical meaning (e.g.,
“December 1st, 1992” will be replaced with
“July 4th, 1776”)

(5) Experiment with a different prompt format.
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Figure 5: EM accuracy and F1 score of GPT-2 Large model on NQ. The scores are averaged over 3 random seeds.

Figure 6: EM accuracy and F1 score of GPT-2 Large model on SQuAD. The scores are averaged over 3 random
seeds.

Figure 7: EM accuracy and F1 score of GPT-3 model on NQ. The scores are averaged over 3 random seeds.

Figure 8: EM accuracy and F1 score of GPT-3 model on SQuAD. The scores are averaged over 3 random seeds.



Figure 9: EM accuracy and F1 score of GPT-2 Large model on NQ. The scores are averaged over 3 random seeds.

Figure 10: EM accuracy and F1 score of GPT-2 Large model on SQuAD. The scores are averaged over 3 random
seeds.

Figure 11: EM accuracy and F1 score of GPT-3 model on NQ. The scores are averaged over 3 random seeds.

Figure 12: EM accuracy and F1 score of GPT-3 model on SQuAD. The scores are averaged over 3 random seeds.


