
Infinite-Width 1-Layer ReLU Networks

with L2 Regularization on 2D Data

Juhyun Park

a senior thesis submitted in partial fulfillment

of the requirements for the degree of

Bachelor of Arts in Mathematics at

Princeton University

Adviser: Boris Hanin

May 1, 2023

Abstract

Given a dataset D = {((x(i)1 , x
(i)
2), y(i))} of two-dimensional input and one-dimensional output, we

investigate the set of 1-layer ReLU networks f(x; θ) that interpolate the dataset and, among such

interpolants, minimize the ℓ2 norm of the weights. In Section 3.1, we consider a dataset D where

the points x(i) = (x
(i)
1 , x

(i)
2) form the vertices of a regular polygon. We present the optimal network

that assigns a non-zero value to one or two consecutive points on the polygon. Using this as a basic

component, we present a heuristic of constructing an interpolant f of the dataset D which we believe

to be near-optimal. In Section 3.2, we consider D to be symmetric with respect to a line ℓ. We show

that if the dataset is effectively 1-dimensional, then any optimal f should also be 1-dimensional.

ii

Acknowledgements

First and foremost, I would like to thank my adviser Prof. Hanin. This work would not have existed

without his insight and guidance. I would also like to thank my second reader Prof. Sly who agreed

to the position on such a short notice. I thank Hyungjun Choi and everyone else who provided

useful insight and feedback.

This work also marks the conclusion of my undergraduate education. I express my gratitude to

my parents who supported my education and to all of my friends who assisted me throughout this

journey. And last but not least, I would like to thank my girlfriend April for providing the emotional

support that I needed.

iii

Declaration

I declare that I have not violated the Honor Code during the composition of this work. This

paper represents my own work in accordance with University regulations.

I authorize Princeton University to reproduce this thesis by photocopying or by other means,

in total or in part, at the request of other institutions or individuals for the purposes of scholarly

research.

iv

Contents

Abstract . ii

Acknowledgements . iii

1 Introduction 1

1.1 Background . 1

1.2 Feedforward Neural Networks . 3

1.2.1 Artificial Neuron . 3

1.2.2 Hidden Layers . 4

1.3 Problem Setting . 5

1.3.1 Dataset . 5

1.3.2 Model . 5

1.3.3 Weight Cost . 6

1.4 Related Work . 7

1.5 Summary of Results . 8

2 Preliminaries 9

2.1 Geometry of ReLU Networks . 9

2.1.1 Decomposing into ReLU Gates . 9

2.1.2 Normalizing a ReLU Gate . 10

2.1.3 Signed Distance From the Hyperplane . 11

2.1.4 Connection to Continuous Piecewise Linear Functions 13

2.2 Regular Polygons . 13

2.3 Reflection and Symmetry . 14

2.3.1 Reflection of Points . 14

2.3.2 Reflection of Hyperplanes . 15

2.3.3 Reflection of ReLU Gates . 16

v

3 Main Results 17

3.1 Regular Polygons . 17

3.1.1 Relaxing One Point . 18

3.1.2 Relaxing Two Points . 20

3.1.3 Relaxing Three or More Points . 23

3.2 Symmetric Dataset . 26

3.2.1 One Pair of Parallel Lines . 28

3.2.2 General Case . 32

3.2.3 Main Theorem . 35

vi

Chapter 1

Introduction

1.1 Background

In statistical modeling, we are given a set D = {(x(i),y(i))}nd
i=1 of training data, where each data

point represents a pair of input variables 1 x(i) ∈ Rnin and output variables 2 y(i) ∈ Rnout . The

main assumption is that there is an unknown relationship f : Rin → Rout such that f(x(i)) = y(i).

By using only the data points in the training dataset D, the goal is to learn a function f̂ that

approximates the underlying relationship f such that the learned function f̂

1. fits the training data points: for each x(i) ∈ D, we want f̂(x(i)) ≈ y(i);

2. generalizes to unseen data points: when we observe the input variables x of a new data point,

we wish f̂(x) ≈ f(x) to be true

where the suitability of f̂ in describing the dataset is often measured with the mean squared loss:

LMSE(f̂ ,D) :=
1

nd

nd∑
i=1

(
f̂(x(i))− y(i)

)2
(1.1)

The MSE loss measures the average deviation of our prediction from the real output, and we would

like to minimize this value. When choosing the function f̂ , instead of considering all possible

functions from Rnin to Rnout , we generally restrict our attention to a class of functions f̂(∗; θ) that

can be parameterized with a parameter vector θ ∈ Rnp . This function space, along with the choice

of parameterization, is referred to as the model.

1also known as explanatory variables or features
2also known as response variables or labels

1

The choice of parameterization represents our assumption about the complexity of the underlying

function f . The conventional wisdom is that when np is small, the model is not specific enough to

represent f , and the minimum loss we can achieve with the model is large on both training and test

data. On the other hand, when we add parameters to the model, we end up searching for f̂ in a

richer, more complex class of functions, and we expect the model to fit the training data better.

When the number of parameters np exceeds the number of data points nd, the model is overpa-

rameterized, and in general, there are infinitely many functions f̂ in the function space that perfectly

fit the training data. But not all of these functions generalize well to data points unseen during

training.

Figure 1.1: Given the training data (blue circle) and test data (red cross), the model without enough
parameters (left) exhibits large training and test loss. When parameters are added to the model, it
is possible to perfectly fit the training data (middle), but when there are too many parameters to
the model (right), it may overfit and generalize poorly to test data.

In classical learning theory, different methods have been proposed for explicit capacity control

that restricts the function space for better generalization [11, 1]. However, in the field of machine

learning, overparameterized neural networks have been shown to exhibit good generalization abilities

without an explicit capacity control on various tasks from computer vision [5, 12] and natural

language processing [2, 9].

One explanation is the common use of ℓ2 regularization in machine learning models. Even though

its effect on the parameters during a single step of training is easily explained, the existence of non-

linear activation function components (e.g., ReLU) in the model makes it difficult to understand

how ℓ2 regularization affects the solution space. Following previous works [7, 10, 8, 4], this paper

examines the geometric properties that ℓ2 regularization induces on the function space learned by

shallow neural networks with a non-linear ReLU component.

2

1.2 Feedforward Neural Networks

Feedforward neural networks are a class of functions that is commonly used in modern machine

learning. In this section, we introduce how these functions are parameterized.

1.2.1 Artificial Neuron

An artificial neuron is the basic building block of a neural network. Provided a parameter vector

θ = (w, b) ∈ Rnin+1 consisting of a weight vector w ∈ Rnin and a bias term b ∈ R, a neuron

represents the function f(x; θ) : Rnin → R defined as

f(x; θ) := σ (w · x+ b) (1.2)

for some choice of non-linear function σ : R → R, referred to as the activation function.

x1 x2 xnin

σ(w · x+ b)

· · ·

w1 w2 wnin

Figure 1.2: Diagram of an artificial neuron.

One of the most commonly used activation function is the Rectified Linear Unit (ReLU)

defined as follows:

[x]+ := max(x, 0) (1.3)

Figure 1.3: Graph of y = [x]+.

3

When ReLU is chosen as the activation function σ for a neuron, it is customary to say that the

neuron is activated or on when f(x; θ) ≥ 0 and deactivated or off otherwise.

1.2.2 Hidden Layers

In feedforward neural networks, a large number of neurons are used as intermediate variables. In

particular, the neurons are arranged in a layered structure such that output values of the neurons

of one layer are used as the input of the neurons of the next layer. Any neuron that is used as an

intermediate variable is referred to as the hidden node and the collection of these hidden nodes

are referred to as the hidden layers of the network.

x1 x2 xnin

h
(1)
1 h

(1)
2 h

(1)
n1

h
(2)
1 h

(2)
2 h

(2)
n2

h
(L)
1 h

(L)
2 h

(L)
nL

y1 y2 ynout

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...

Figure 1.4: Diagram of a deep neural network with L hidden layers.

If we let h(j) =
(
h
(j)
1 , h

(j)
2 , · · · , h(j)nj

)
denote the values of nj nodes of the j-th layer, then each

layer of nodes can be understood as the affine transformation of the previous layer of nodes, followed

by an element-wise application of a non-linear activation function σ. Then a neural network with L

4

hidden layers can be mathematically formulated as:

h(1) = σ

(
W(1)x+ b(1)

)
h(j) = σ

(
W(j)h(j−1) + b(j)

)
∀j = 2, 3, · · · , L

y = W(L+1)h(L) + b(L)

(1.4)

Without the non-linear activations, the entire function will collapse as a single affine transfor-

mation. However, by adding an element-wise non-linearity in between each layer, the function class

that the model represents becomes very rich. 3 When the network contains L > 1 layers, we also

say that the network is deep, and if L = 1, we say the network is shallow.

1.3 Problem Setting

1.3.1 Dataset

We consider data with nout = 1. That is, we are given a set D = {(x(i), y(i))}nd
i=1 of data points,

where x(i) ∈ Rnin and y(i) ∈ R.

1.3.2 Model

We consider 1-layer ReLU networks of size (or width) nh defined as:

f(x; θ) := W(2) ·
[
W(1)x+ b(1)

]
+
+ a · x+ b(2) (1.5)

:=

(
nh∑
i=1

W
(2)
i

[
W

(1)
i · x+ b

(1)
i

]
+

)
+ a · x+ b(2) (1.6)

where the parameter vector θ refers to all entries in

1. W(1) ∈ Rnh×nin : the weight matrix for the hidden layer;

2. b(1) ∈ Rnh : the bias terms for the hidden layer;

3. W(2) ∈ Rnh : the weight vector for the output;

4. a ∈ Rnin and b ∈ R: the bias terms for the output

3[3] shows that the set of neural networks of L = 1 with a sigmoidal activation is dense in the set of all continuous
functions on [0, 1]nin .

5

Note that the vector a represents a residual connection from the input to the output that bypasses

the hidden layer. A residual connection defined in this particular way is not common in practice,

but it has been included for the sake of cleaner mathematical analysis, in alignment with previous

works [10, 8, 4].

x1 xnin

y

· · ·

· · ·
W(1)

W(2)

a

Figure 1.5: Diagram of a 1-layer ReLU network.

1.3.3 Weight Cost

We denote the set of all 1-layer ReLU networks that perfectly fit D as ReLU(D), with no restriction

on the width nh of the network. That is,

ReLU(D) := {f(∗; θ) | f is a 1-layer ReLU network and f(x;θ) = y ∀(x, y) ∈ D} (1.7)

Since we have no upper limit on the width nh of the network, generally ReLU(D) contains an

infinite number of overparameterized networks that interpolate the dataset. However, many of these

functions are expected to overfit the training data and generalize poorly to test data. A widely used

technique that mitigates the overfitting problem is the ℓ2 regularization, which seeks to minimize

the ℓ2 weight cost C2(θ) out of all interpolants. In particular, we define

RidgelessReLU(D) := argmin
f(x;θ)∈ReLU(D)

C2(θ) (1.8)

where the weight cost is defined as

C2(θ) :=

nh∑
i=1

(∥∥∥W(1)
i

∥∥∥2
2
+
∣∣∣W(2)

i

∣∣∣2) (1.9)

6

Following the conventional definition, the bias terms b(1) and b(2) have been omitted from the weight

cost. Additionally, the weights a for the residual affine layer has been omitted, following the analysis

of previous works [10, 8, 4].

1.4 Related Work

In [7] and [10], it was shown that controlling the ℓ2 weight cost of a 1-layer ReLU network is

equivalent to controlling the ℓ1 weight of the output layer, when the weights of the hidden layer are

restricted to unit norm. We present the formal statement without proof.

Proposition 1.4.1 (Theorem 1 of [7], Lemma A.1 of [10]).

RidgelessReLU(D) = argmin
f(x;θ)∈ReLU(D)∥∥∥W(1)

i

∥∥∥
2
=1 ∀i

C1(θ) (1.10)

where C1(θ) is defined as

C1(θ) :=

nh∑
i=1

∣∣∣W(2)
i

∣∣∣ (1.11)

In the case of nin = 1, [10] shows that minimizing the weight cost C1(θ) is equivalent to min-

imizing the total variation norm of the function. In particular, the function fD that linearly in-

terpolates the dataset satisfies fD ∈ RidgelessReLU(D). Furthermore, [4] completely describes

RidgelessReLU(D) as the set of functions that perform nearest neighbor curvature extrapolation

— any function f ∈ RidgelessReLU(D) must coincide with fD on segments where the convex-

ity/concavity is ambiguous, but otherwise can be convex/concave within the boundaries set by the

neighboring segments.

In the general case where nin > 1, the analysis is not so simple. [8] finds that minimizing C1(θ)

is equivalent to minimizing the semi-norm ∥f∥R on ReLU(D) defined as

∥f∥R := sup

{
− 1

2(2π)nin−1

〈
f, (−∆)(nin+1)/2R∗{ψ}

〉 ∣∣∣∣ ψ ∈ S(Snin−1 × R), ψ even, ∥ψ∥∞ ≤ 1

}

where Snin−1 is the unit sphere and S(Snin−1×R) is the set of Schwartz functions on Snin−1×R and

R∗ represents the dual Radon transform. But the question of “What are the examples or properties

of the functions that minimize this semi-norm?” is still not well understood.

7

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8)

fD

f

Figure 1.6: When nin = 1, any f ∈ RidgelessReLU(D) (red dashed line) coincides with the linear
interpolant fD (black solid line) on segments where curvature is ambiguous and is concave/convex
within the dashed boundary.

1.5 Summary of Results

In this paper, we consider two different classes of datasets where nin = 2. In Section 3.1, we consider

a dataset D where the points x(i) form the vertices of a regular polygon. For this class of dataset,

we propose a heuristic to directly compute an interpolant f ∈ ReLU(D) that we believe to be near-

optimal. In Section 3.2, we consider D to be symmetric with respect to a line ℓ. We show that if

the dataset is effectively 1-dimensional, then any optimal f ∈ RidgelessReLU(D) should also be

1-dimensional.

8

Chapter 2

Preliminaries

In this chapter, we present some preliminary definitions and observations that will be relevant for

the main discussion.

2.1 Geometry of ReLU Networks

2.1.1 Decomposing into ReLU Gates

Say we have a 1-layer ReLU network

f(x; θ) =

(
nh∑
i=1

W
(2)
i

[
W

(1)
i · x+ b

(1)
i

]
+

)
+ a · x+ b(2)

When we ignore the residual connection a · x+ b(2), then f is the sum of nh individual components

fi(x; θ) =W
(2)
i

[
W

(1)
i · x+ b

(1)
i

]
+

that each correspond to one hidden node. We refer to this function component as a ReLU gate.

Example 2.1.1. Consider a 1-layer ReLU network

f(x; θ) = 2[(1, 2) · x− 1]+ + 0.3 · [(−1,−3) · x− 4]+ + 0.5 · [(−2, 1) · x− 3]+ (2.1)

with three ReLU gates. Figure 2.1 shows the graph of f alongside the graph for its three ReLU

gates. Notice that each ReLU gate is a continuous piecewise linear function with a single hyperplane

9

1 where the ReLU changes behavior.

Figure 2.1: The graph of f(x; θ) = 2[(1, 2) ·x− 1]+ +0.3 · [(−1,−3) · x− 4]+ +0.5 · [(−2, 1) · x− 3]+
and its three ReLU gates.

From Example 2.1.1, we see that a ReLU gate is characterized by the location of its defining

hyperplane, the direction from the hyperplane where it is activated, and its “slope” when activated.

2.1.2 Normalizing a ReLU Gate

Given an arbitrary ReLU gate

fi(x; θ) =W
(2)
i

[
W

(1)
i · x+ b

(1)
i

]
+

we can define its normalization

f̃i(x; θ̃) = W̃
(2)
i

[
W̃

(1)
i · x+ b̃

(1)
i

]
+

(2.2)

where

W̃
(2)
i =

∥∥∥W(1)
i

∥∥∥W (2)
i

W̃
(1)
i =

W
(1)
i∥∥∥W(1)
i

∥∥∥
b̃
(1)
i =

b
(1)
i∥∥∥W(1)
i

∥∥∥

(2.3)

such that the decision boundary of the ReLU gate is maintained, but the hyperplane is now defined by

a unit normal vector W̃
(1)
i . Lemma 2.1.3 will show that the two ReLU gates are actually equivalent,

by using the fact that ReLU is a 1-homogeneous function.

1In the case of our 2-dimensional input, this is a line, but for generalizability to higher dimensional input, we refer
to the decision boundary as a hyperplane.

10

Lemma 2.1.2. For any c ≥ 0 and for any x ∈ R, we have [cx]+ = c · [x]+

Proof. When c = 0, both sides of the equation are 0, and the conclusion is obvious. If c > 0, then

sgn(cx) = sgn(x), and therefore

[cx]+ =

cx x ≥ 0

0 x < 0

Notice that the function on the right hand side is precisely c · [x]+.

Lemma 2.1.3. For any ReLU gate fi(x; θ) = W
(2)
i

[
W

(1)
i · x+ b

(1)
i

]
+
, its normalized version

f̃i(x; θ̃) defined as in (2.2) and (2.3) satisfies fi(x; θ) = f̃i(x; θ̃) for any x ∈ R2.

Proof. By Lemma 2.1.2, for any x ∈ R2, we have

f̃i(x; θ̃) = W̃
(2)
i

[
W̃

(1)
i · x+ b̃

(1)
i

]
+

= W̃
(2)
i

 1∥∥∥W(1)
i

∥∥∥
(
W

(1)
i · x+ b

(1)
i

)
+

=
W̃

(2)
i∥∥∥W(1)
i

∥∥∥
[
W

(1)
i · x+ b

(1)
i

]
+

=W
(2)
i

[
W

(1)
i · x+ b

(1)
i

]
+

= fi(x; θ)

Corollary 2.1.4. For any 1-layer ReLU network f(x; θ), there exists another network f̃(x; θ̃) whose

ReLU gates are all normalized and f(x; θ) = f̃(x; θ̃).

By the result of Corollary 2.1.4, we can define an equivalence relation on ReLU(D) based on

the normalized version of each network. After factoring out ReLU(D) by the equivalence classes,

we can assume that each ReLU gate of a ReLU network is defined by a unit normal vector W
(1)
i

without loss of generality. In view of Proposition 1.4.1, we can now focus our attention on minimizing

C1(θ) =
nh∑
i=1

∣∣∣W (2)
i

∣∣∣.
2.1.3 Signed Distance From the Hyperplane

As observed earlier, a ReLU gate fi(x; θ) =W
(2)
i

[
W

(1)
i · x+ b

(1)
i

]
+
is characterized by the decision

boundary Hi :=
{
x ∈ R2 | W(1)

i · x+ b
(1)
i = 0

}
. Once W

(1)
i has been normalized to have unit

11

norm, then
∣∣∣W(1)

i · x+ b
(1)
i

∣∣∣ computes the Euclidean distance from an arbitrary point x ∈ R2 to the

hyperplane Hi. But simply computing the Euclidean distance is not sufficient for our analysis. We

additionally need to know which side of Hi that fi is on. So we consider the signed distance

d(x,Hi) := W
(1)
i · x+ b

(1)
i (2.4)

which will be positive on the side of Hi that the normal vector is pointing towards, and negative on

the other side.

The value of a single ReLU gate fi(x; θ) on a given point x ∈ R2 can now be computed as

fi(x; θ) =W
(2)
i [d(x,Hi)]+, the product of the weightW

(2)
i of the ReLU gate and the signed distance

between x and the hyperplane Hi. On the other hand, if we know that we want to assign a value of

y to the given point x, we should set the weight of the ReLU gate to be W
(2)
i = y

[d(x,Hi)]+
.

x1-axis

x2-axis

H1

H2

H3

2
√
5

0.3
√
10

0.5
√
5

x

d(x,H1)

d(x,H2) d(x,H3)

Figure 2.2: Visualization of the ReLU network in (2.1) using normalized ReLU gates.

Example 2.1.5 (Example 2.1.1 revisited). After normalization, each of ReLU gates in (2.1) can be

rewritten as

f1(x; θ) = 2
√
5

[(
1√
5
,
2√
5

)
· x− 1√

5

]
+

f2(x; θ) = 0.3
√
10 ·

[(
− 1√

10
,− 3√

10

)
· x− 4√

10

]
+

f3(x; θ) = 0.5
√
5 ·
[(

− 2√
5
,
1√
5

)
· x− 3√

5

]
+

Figure 2.1.3 shows an alternate visualization of the ReLU network, where each ReLU gate is rep-

12

resented with its hyperplane (with orientation) and weight. Given a data point x = (−4, 1), its

function value can be computed from its signed distance to the hyperplanes:

f(x; θ) = 2
√
5[d(x,H1)]+ + 0.3

√
10[d(x,H2)]+ + 0.5

√
5[d(x,H3)]+

= 2
√
5 · 0 + 0.3

√
10 · 0 + 0.5

√
5 · 6√

5
= 3

In view of the observations made in this section, we now denote a 1-layer ReLU network as

f(x; θ) =

(
nh∑
i=1

W
(2)
i [d(x,Hi)]+

)
+ a · x+ b(2) (2.5)

where the Hi are the hyperplanes that define each of the ReLU gates of the network.

2.1.4 Connection to Continuous Piecewise Linear Functions

Every ReLU gate is continuous and piecewise linear. Hence, a 1-layer ReLU network, a linear

combination of these components, is also continuous and linear on each cell of the hyperplane

arrangement. For the case of nin = 1, the reverse direction is also true — any continuous piecewise

linear function can be represented with a 1-layer ReLU network. However, for nin ≥ 2, that is not

necessarily true.

Theorem 2.1.6 (Theorem 4.1 of [6]). If nin ≥ 2, then any continuous piecewise linear function

with compact support on Rnin cannot be represented by a 1-layer ReLU network. 2

The theorem above illustrates one of the reasons why it is difficult to analyze the case for nin ≥ 2,

compared to the case nin = 1. Since not all continuous piecewise linear functions can be attained

with a 1-layer ReLU network, we cannot directly try to linearly interpolate the data points. Instead,

a geometric understanding of ReLU networks is necessary to clearly understand the shape of the

function space ReLU(D).

2.2 Regular Polygons

In Section 3.1, we will consider dataset D that consists of data points x which form the vertices of a

regular polygon. To prepare for the discussion, we review relevant definitions and make preliminary

observations.

2The definition of a 1-layer ReLU network in [6] does not include a residual connection, but the proof can be easily
adapted by rewriting the residual connection as the sum of two ReLU gates that share the same hyperplane and face
opposite directions.

13

Definition 2.2.1. A set of points {x(1), · · · ,x(n)} form the vertices of a regular n-gon with side

length r > 0 if for each 1 ≤ i ≤ n 3

1. x(i)x(i+1) = r

2. ∠x(i−1)x(i)x(i+1) = π − γn

where γn = 2π
n denotes the common external angle.

The following fact is well known and will be presented without proof.

Proposition 2.2.2. A regular n-gon can be inscribed in a circle.

One property of circles is that any chord splits a circle into two continuous arcs. Therefore, given

a ReLU gate, its hyperplane will separate a circle into two continuous pieces.

Corollary 2.2.3. Let {x(1), · · · ,x(n)} form the vertices of a regular polygon. Then given a ReLU

gate, the set of points that activate the ReLU gate is either ∅ or {x(i), · · · ,x(i+k)} for some 1 ≤ i ≤ n

and 0 ≤ k ≤ n − 1. On the other hand, given a set of the form {x(i), · · · ,x(i+k)}, we can find a

ReLU gate that is activated only on the prescribed set of points.

2.3 Reflection and Symmetry

In Section 3.2, we will consider dataset D that is symmetric with respect to a line ℓ. To prepare for

the discussion, we review relevant definitions and make preliminary observations.

2.3.1 Reflection of Points

Given a point x = (x1, x2) ∈ R2 and a line ℓ =
{
x ∈ R2 | a · x+ b = 0

}
, the reflection of x across ℓ

is defined as the unique point x̃ ∈ R2 such that d(x, ℓ) = −d(x̃, ℓ) and the segment between x and x̃

is perpendicular to ℓ. In other words, it is the point with the same distance away from ℓ but in the

“opposite direction.” The formula for the reflection operation Rℓ : x 7→ x̃ can be explicitly given as

Rℓ(x) := x− 2d(x, ℓ)a = x− 2(a · x+ b)

a · a
a (2.6)

In particular, if b = 0 (i.e., ℓ goes through the origin), then the reflection operation Rℓ is orthogonal.

For any general b ̸= 0, the reflection across ℓ can be decomposed into a pair of translations and an

orthogonal reflection.

3To avoid having to consider edge cases at the boundary, we understand the indices i to be an element of Zn. For
example, x(0) := x(n) and x(n+1) := x(1).

14

x x̃

x− x0 x̃− x0

Tx0

Rℓ

Tx0⟲
RTx0

(ℓ)

Figure 2.3: Diagram representing Proposition 2.3.1.

Proposition 2.3.1. Let ℓ =
{
x ∈ R2 | a · x+ b = 0

}
be a line and choose any point x0 ∈ ℓ. Then

Rℓ = T−1
x0
RTx0

(ℓ)Tx0
where Tx0

: x 7→ x− x0 denotes the translation that maps x0 to the origin.

Proof. First notice that Tx0(ℓ) =
{
x ∈ R2 | a · x+ a · x0 + b = 0

}
. Therefore, by the formula (2.6),

(T−1
x0
RTx0 (ℓ)

Tx0
)(x) = (T−1

x0
RTx0 (ℓ)

)(x− x0)

= T−1
x0

(
(x− x0)−

2(a · (x− x0) + a · x0 + b)

a · a
a

)
= T−1

x0
(Rℓ(x)− x0)

= Rℓ(x)

When x̃ is a reflection of x across ℓ, we say that x and x̃ are symmetric with respect to ℓ.

2.3.2 Reflection of Hyperplanes

Given a hyperplane H =
{
x ∈ R2 | w · x+ bH = 0

}
and a line ℓ =

{
x ∈ R2 | a · x+ bℓ = 0

}
, let us

define x0 to be the intersection of H and ℓ. If H and ℓ are parallel, define x0 to be any point on ℓ

instead. Now let

w̃ = RTx0 (ℓ)
(w) (2.7)

denote the reflection across the line ℓ after it has been translated such that x0 is the origin. The

reflection of H across ℓ is defined as

H̃ :=
{
x ∈ R2 | w̃ · (x− x0) = 0

}
(2.8)

Similarly to points, if H̃ is the reflection of H across ℓ, we say that H and H̃ are symmetric with

respect to ℓ. We now present a trivial observation.

15

Proposition 2.3.2. If x, x̃ and H, H̃ are respectively symmetric with respect to ℓ, then d(x,H) =

d(x̃, H̃).

Proof. First, by Proposition 2.3.1, we have

x̃− x0 = Tx0
(Rℓ(x)− x0) = RTx0

(ℓ)Tx0
(x) = RTx0

(ℓ)(x− x0)

In particular, RTx0
(ℓ) : w 7→ w̃ is orthogonal since Tx0

(ℓ) passes through the origin.

d(x̃, H̃) =
〈
RTx0

(ℓ)(w), x̃− x0

〉
=
〈
w, R⊺

Tx0
(ℓ)RTx0

(ℓ)(x− x0)
〉
= ⟨w,x− x0⟩ = d(x,H)

2.3.3 Reflection of ReLU Gates

Given a ReLU gate f(x; θ) =W (2) [d(x,H)]+ and a line ℓ, we can define the reflection of f across

ℓ as

f̃(x; θ̃) :=W (2)
[
d(x, H̃)

]
+

(2.9)

where we use the same weight W (2) but the defining hyperplane H has been reflected across ℓ.

16

Chapter 3

Main Results

3.1 Regular Polygons

In this section, we assume that the data points x(i) of the dataset D = {(x(i), y(i))}nd
i=1 form the

vertices of a regular nd-gon where nd ≥ 4. 1

Definition 3.1.1. A dataset D = {(x(i), y(i))}nd
i=1 where nd ≥ 4 is sampled from a regular

polygon with side length r if {x(i)}nd
i=1 forms the vertices of a regular nd-gon with side length r.

When D is sampled from a regular polygon, the set of points that can be linearly separable

from the remaining points can be precisely described as the set of consecutive points on the polygon.

Hence, given a ReLU gate fi, the points that are activated are always consecutive; on the other hand,

given a set of consecutive points, it is possible to propose a ReLU gate fi that is only activated only

on the selected points.

H

Figure 3.1: When D is sampled from a regular polygon, any H separates a set of consecutive points
from the remaining points.

1The assumption that nd ≥ 4 is critical for many of the arguments.

17

Based on this understanding, we devise a heuristic that will construct a ReLU network f ∈

ReLU(D) that interpolates the dataset. The main idea is to

1. select a point x(i) or a pair of consecutive points x(i),x(i+1);

2. fix a value yi or a pair of values yi, yi+1 that we would like to assign to each point; 2

3. and find a ReLU gate that assigns the prescribed values with minimal weight cost.

We will refer to this process as relaxing the selected point (x(i), yi) or the pair of points (x(i), yi),

(x(i+1), yi+1). We propose using this process as a subroutine to interpolate the full dataset.

3.1.1 Relaxing One Point

As a warm up, assume we wish to relax a single point (x(i), yi); that is, we want to assign a value yi

to the point x(i) but 0 to all other points x(j) where j ̸= i. Recall from Section 2.1.3 that the weight

cost of a ReLU gate is inversely proportional to the distance d(x(i),H). Therefore, to minimize the

weight cost, the ReLU gate has to be as far way from x(i) as possible, while also maintaining the fact

that it has to be deactivated at all other points. Intuitively, the hyperplane Hi that passes through

x(i−1) and x(i+1) achieves this goal. Proposition 3.1.2 verifies this intuition for an arbitrary choice

of a point and a value.

Proposition 3.1.2. Let D be sampled from a regular polygon with side length r. To relax (x(i), yi)

with a single ReLU gate, we need at least a weight cost of C1(θi) =
|y(i)|

sin
γnd
2 ·r

, and it is uniquely

achieved by

fi(x; θi) =
yi

sin
γnd

2 · r
[d(x,Hi)]+

where Hi is the hyperplane that goes through x(i−1) and x(i+1) such that d(x(i),Hi) > 0.

x(i)

x(i−1) x(i+1)
Hi

r

γnd

γnd

2

Figure 3.2: Diagram for computing the optimal weight cost in Proposition 3.1.2.

2Since multiple ReLU gates may be used to fit a single data point, yi does not necessarily equal y(i).

18

Proof. First let us compute the weight cost of fi. Notice that

∠x(i)x(i−1)x(i+1) = ∠x(i)x(i+1)x(i−1) =
γnd

2

Then the distance between x(i) and Hi can be explicitly calculated as

d(x(i),Hi) = sin
γnd

2
· r (3.1)

Now let H be any other hyperplane that linearly separates x(i) from the rest of the points; that

is, d(x(i),H) > 0 and d(x(i−1),H), d(x(i+1),H) ≤ 0. It suffices to show that d(x(i),H) < d(x(i),Hi).

x(i)

x(i−1) x(i+1)

H
H̃

Hi

A

Figure 3.3: Diagram of the proof for Proposition 3.1.2.

Case 1 First consider the case where H passes through precisely one of x(i−1) and x(i+1). Without

loss of generality, assume d(x(i−1),H) = 0, d(x(i+1),H) < 0. Notice that the line segment between

x(i) and its projection on Hi intersects with H. Let A denote this point. Then

d(x,Hi) > d(x, A) > d(x,H)

Case 2 Next consider the case where H does not pass through x(i−1) nor x(i+1). Notice that we

can translate H away from x(i) until it touches one of x(i−1) or x(i+1). Let H̃ be the translated

hyperplane. We apply the analysis of Case 1 above to get

d(x,Hi) > d(x, H̃) > d(x,H)

19

3.1.2 Relaxing Two Points

Now assume we wish to relax a pair of points (x(i), yi), (x
(i+1), yi+1) simultaneously with a sin-

gle ReLU gate. This immediately adds a restriction to the values we can assign — we require

sgn(yi) = sgn(yi+1). Also, since we need to relax the two points simultaneously, we additionally

require the hyperplane H to satisfy d(x(i),H) : d(x(i+1),H) = yi : yi+1. Fortunately, Lemma 3.1.3

guarantees that as long as sgn(yi) = sgn(yi+1), we can find a single ReLU gate that will relax

(x(i), yi), (x
(i+1), yi+1). Proposition 3.1.4 will compute the exact weight cost of the optimal choice

of the hyperplane.

Lemma 3.1.3. If D is sampled from a regular polygon and if sgn(yi) = sgn(yi+1) ̸= 0, then it is

possible to relax (x(i), yi), (x
(i+1), yi+1) with a single ReLU gate.

x(i) x(i+1)

x(i−1) x(i+2)

HiHi+1

H

Hγ

γ
γ0

Figure 3.4: Diagram of the proof for Lemma 3.1.3.

Proof. Following the notation in the previous section, let Hi be the hyperplane that goes through

x(i−1) and x(i+1) and is activated at x(i) and let Hi+1 be the one that passes through x(i) and x(i+2)

and is activated at x(i+1). Additionally, let H be the hyperplane that passes through x(i−1) and

x(i+2) and is activated at x(i) and x(i+1). Let γ0 > 0 denote the angle between Hi and H.

For γ ∈ (0, γ0], consider the hyperplane Hγ that passes through x(i−1) and forms an angle γ with

Hi. Then the ratio

r(γ) :=
d(x(i),Hγ)

d(x(i+1),Hγ)
(3.2)

is a continuous function of γ. In particular, r(γ) → ∞ when γ → 0 and r(γ0) = 1. Similarly, for

γ ∈ [γ0, 2γ0), consider the hyperplane Hγ that passes through x(i+2) and forms an angle 2γ0 − γ

with H. Then the ratio r(γ) is a continuous function of γ, where r(γ) → 0 when γ → 2γ0. By the

Intermediate Value Theorem, there exists a γ∗ such that r(γ) = yi

yi+1
.

Now we compute the weight cost of the hyperplane we found.

20

Proposition 3.1.4. If D is sampled from a regular polygon with side length r and if sgn(yi) =

sgn(yi+1) ̸= 0, then the minimum weight cost of relaxing a pair of points (x(i), yi), (x
(i+1), yi+1)

simultaneously using a single ReLU gate is

√
(yM − ym)2 + 2 cos γnd

yM (yM − ym) + y2M
sin γnd

· r
(3.3)

where yM = max(|yi| , |yi+1|) and ym = min(|yi| , |yi+1|)

Proof. By Lemma 3.1.3, we are guaranteed a hyperplane H that can relax (x(i), yi), (x
(i+1), yi+1).

Also, by the construction of the proof, we are guaranteed one of the following:

1. |yi| > |yi+1| ⇐⇒ H passes through x(i−1) but not x(i+2)

2. |yi| < |yi+1| ⇐⇒ H passes through x(i+2) but not x(i−1)

3. |yi| = |yi+1| ⇐⇒ H passes through both x(i−1) and x(i+2)

For each case, it suffices to prove that

d(x(i),H) =
sin γnd

· r · |yi|√
(yM − ym)2 + 2 cos γnd

yM (yM − ym) + y2M
(3.4)

x(i−1)

x(i) x(i+1)

H

γnd

γ1

γ2
r

r

α · yM

α · ym

p(i)

p(i+1)

A

Figure 3.5: Diagram of Case 1 & 2 in the proof for Proposition 3.1.4.

Case 1 & 2 Relabel the indices if necessary to have |yi| > |yi+1|. That is, yM = |yi| and

ym = |yi+1|. Let p(i) and p(i+1) respectively denote the projection of x(i) and x(i+1) onto H. Let

A denote the intersection between the line x(i)x(i+1) and H. Then by symmetry of the triangles

21

△Ax(i)p(i) and △Ax(i+1)p(i+1), we see that

x(i)A = r · yM
yM − ym

Next, by the choice of H, we know that

x(i)p(i) : x(i+1)p(i+1) = yM : ym

Let x(i)p(i) = α · yM and x(i+1)p(i+1) = α · ym. Also, let γ1 denote the angle ∠x(i)x(i−1)A and γ2

denote ∠x(i)Ax(i−1). Then we notice that

sin γ1 =
α · yM
rnd

sin γ2 =
α · ym

r · yM

yM−ym

(3.5)

At the same time, since γnd
= γ1 + γ2, we have sin γ2 = sin γnd

cos γ1 − cos γnd
sin γ1. We plug in

the values from (3.5) to get

α =
sin γnd

· r√
(yM − ym)2 + 2 cos γnd

yM (yM − ym) + y2M
(3.6)

x(i−1)

x(i) x(i+1)

x(i+2)
H

γnd

γnd

r sin γnd
· r

p(i) p(i+1)

Figure 3.6: Diagram of Case 3 in the proof for Proposition 3.1.4.

Case 3 In this case, yM = ym = |yi| = |yi+1|. Let p(i) and p(i+1) respectively denote the projection

of x(i) and x(i+1) onto H. Then we have ∠x(i)x(i−1)x(i+2) = γnd
and therefore

d(x(i),H) = x(i),p(i) = sin γnd
· r (3.7)

22

3.1.3 Relaxing Three or More Points

Now we wish to relax a number of points (x(i), yi), (x
(i+1), yi+1), · · · , (x(i+k), yi+k). However, in

general we cannot find a single ReLU gate to perform the task. To relax all points simultaneously,

we require the distance between each point and the ReLU gate to be proportional to the value we

want to assign. In the case of two points, the ReLU gate had a large degree of freedom to rotate

to allow an arbitrary ratio between the two distances, but for a general number of points, it is

extremely difficult to describe the set of ratios that are achievable. It likely also depends on nd,

the number of data points in the dataset, which does not allow for a general analysis. Instead, in

this subsection, we investigate the process of using one ReLU gate to relax each pair of consecutive

points. A clean mathematical formulation of the optimal choice of hyperplanes suggests that there

is some underlying theory in play.

When we relax three consecutive points (x(i−1), yi−1), (x
(i), yi), (x

(i+1), yi+1) by using ReLU

gates that can only relax two points at a time, both ReLU gates will try to assign some values to

the middle point x(i). Therefore, we need to split yi into yi,1 and yi,2 and allocate each of them to

the corresponding ReLU gate. Theorem 3.1.5 states that the optimal allocation is proportional to

the values of the surrounding points. That is, yi,1 : yi,2 = yi−1 : yi+1.

Theorem 3.1.5. Let D be sampled from a regular polygon with a side length r. If we wish to re-

lax three points (x(i−1), yi−1), (x
(i), yi), (x

(i+1), yi+1) simultaneously using exactly two ReLU gates,

where sgn(yi−1) = sgn(yi) = sgn(yi+1) ̸= 0, then it is optimal to relax (x(i−1), yi−1), (x
(i), yi−1

yi−1+yi+1
yi)

with one and (x(i), yi+1

yi−1+yi+1
yi), (x

(i+1), yi+1) with the other.

Proof. Without loss of generality, assume yi−1, yi, yi+1 > 0. For y ∈ [0, yi], let c1(y) be the weight

cost of the first ReLU gate which relaxes the pair of points (x(i−1), yi−1), (x
(i), y) and let c2(y) denote

the weight cost for the other ReLU gate relaxing (x(i), yi − y), (x(i+1), yi+1). Then the total weight

cost is c(y) = c1(y) + c2(y), where c1, c2 is explicitly given by Proposition 3.1.4:

c1(y) =

√

(y−yi−1)2+2 cos γnd
yi−1(yi−1−y)+y2

i−1

sin γnd
·r y ≤ yi−1

√
(y−yi−1)2+2 cos γnd

y(y−yi−1)+y2

sin γnd
·r y ≥ yi−1

c2(y) =

√

(y−yi+yi+1)2+2 cos γnd
(y−yi)(y−yi+yi+1)+(y−yi)2

sin γnd
·r y ≤ yi − yi+1

√
(y−yi+yi+1)2+2 cos γnd

yi+1(y−yi+yi+1)+y2
i+1

sin γnd
·r y ≥ yi − yi+1

23

Notice that each of the cost function is piecewise twice-differentiable. The derivative is given as

c′1(y) =

y−(1+cos γnd

)yi−1

sin γnd
·r
√

(y−yi−1)2+2 cos γnd
yi−1(yi−1−y)+y2

i−1

< 0 y < yi−1

2(1+cos γnd
)y−(1+cos γnd

)yi−1

sin γnd
·r
√

(y−yi−1)2+2 cos γnd
y(y−yi−1)+y2

> 0 y > yi−1

c′2(y) =

2(1+cos γnd

)y−2(1+cos γnd
)(2yi+yi+1)

sin γnd
·r
√

(y−yi+yi+1)2+2 cos γnd
(y−yi)(y−yi+yi+1)+(y−yi)2

< 0 y < yi − yi+1

y+(1+cos γnd
)yi+1−yi

sin γnd
·r
√

(y−yi+yi+1)2+2 cos γnd
yi+1(y−yi+yi+1)+y2

i+1

> 0 y > yi − yi+1

(3.8)

By explicit calculation, we observe that c′′1(y), c
′′
2(y) > 0 except at the points y = yi−1 or y = yi−yi+1

(if they exist in the domain of the functions), where the derivative may not be defined. Note that

c′1, c
′
2 are negative on the left and positive on the right of their respective non-differentiable points.

Since c1, c2 are continuous throughout the domain, we conclude that c1, c2 are strictly convex, which

implies that c = c1 + c2 is also strictly convex. Therefore, it suffices to examine the first order

conditions. Set y∗ = yi−1

yi−1+yi+1
yi. We prove that y∗ is optimal in the following three cases.

Case 1 First consider the case where yi = yi−1 + yi+1. Then we have y∗ = yi−1 = yi − yi+1, so

the derivative is undefined for both c1, c2. But since the derivatives are negative on the left of y∗

and positive on the right of y∗, we know that c obtains a unique minimum at y∗.

Case 2 Next consider the case yi < yi−1 + yi+1. Then y∗ < yi−1 and y∗ < yi − yi+1. We plug in

y∗ to the first case of each formula in (3.8) to conclude c′1(y
∗) + c′2(y

∗) = 0.

Case 3 Finally consider the case yi > yi−1+yi+1. Then y
∗ > yi−1 and y∗ > yi−yi+1. Similarly to

Case 2, we plug in y∗ to the second case of each formula in (3.8) to conclude c′1(y
∗)+c′2(y

∗) = 0.

Now assume we relax k+1 consecutive points (x(i), yi), (x
(i+1), yi+1), · · · , (x(i+k), yi+k) by using

k ReLU gates each of which can only relax two points at a time. Then for each j = 1, · · · , k − 1,

we need to split the value yi+j into yi+j,1 and yi+j,2 and allocate each of them to the corresponding

ReLU gate. Corollary 3.1.6 shows that the optimal allocation is proportional to the allocated values

of the surrounding points (if such allocation exists).

Corollary 3.1.6. Let D be sampled from a regular polygon with a side length r. If we wish to

relax k + 1 points (x(i), yi), (x
(i+1), yi+1), · · · , (x(i+k), yi+k) simultaneously using at most k ReLU

gates, where sgn(yi) = · · · = sgn(yi+k) ̸= 0, then for each j = 1, · · · , k, it is optimal to relax

(x(i+j−1), yi+j−1,2), (x
(i+j), yi+j,1) if there exist allocation yi+j,1, yi+j,2 ∈ [0, yi+j] (if yi+j > 0) or

24

yi+j,1, yi+j,2 ∈ [yi+j , 0] (if yi+j < 0) such that

1. yi+j,1 + yi+j,2 = yi+j

2. yi,1 = yi+k,2 = 0

3. yi+j,1 : yi+j,2 = yi+j−1,2 : yi+j+1,1

Proof. Let Hj be the ReLU gate that relaxes (x(i+j−1), yi+j−1,2), (x
(i+j), yi+j,1) simultaneously.

Similarly to the proof of Theorem 3.1.5, we can define a cost function cj for Hj . We can similarly

show that the total cost of the ReLU gates is strictly convex. Also, note that the total cost depends

on a particular variable yi+j,1 or yi+j,2 only through two cost functions cj and cj+1. Therefore,

if there is a point with zero gradient, each variable has to satisfy the relationship prescribed by

Theorem 3.1.5.

Unfortunately, there are values yi, · · · , yi+k where no such allocation exists.

Example 3.1.7. Let y1 = 1, y2 = 100, y3 = 1, y4 = 1, y5 = 100. Assume that for each j = 2, 3, 4,

we want to find values yj,1, yj,2 ∈ [0, yj] such that yj,1 + yj,2 = yj and

1. y2,1 : y2,1 = y1 : y3,1

2. y3,1 : y3,2 = y2,2 : y4,1

3. y4,1 : y4,2 = y3,2 : y5

Solving the system of linear equations gives y3,2 = − 4999
51 , which does not have the same sign as y3

and cannot be used as a solution.

Based on the result of a few numerical experiments, we propose a few conjectures about how we

can apply the result of Corollary 3.1.6.

Definition 3.1.8. We say that a sequence of numbers {y1, · · · , yk} is an increasing-decreasing

sequence if there exists i such that

1. sgn(y1) = · · · = sgn(yk) ̸= 0

2. |y1| ≤ · · · ≤ |yi|

3. |yi| ≥ · · · ≥ |yk|

Conjecture 3.1.9. If we have an increasing-decreasing sequence of values {y1, · · · , yk}, then there

exists an allocation yj,1, yj,2 that satisfy the condition of Corollary 3.1.6.

25

Note that any sequence of length 1 is an increasing-decreasing sequence. Therefore, given an

arbitrary sequence of values, we can decompose them into a concatenation of increasing-decreasing

subsequences. Note that the values need not be of the same sign.

Lemma 3.1.10. Given a sequence of values {y1, · · · , yk}, it is possible to find 1 ≤ j ≤ k + 1 and

indices i0 = 1 ≤ i1 ≤ i2 ≤ · · · ≤ ij = k such that for each j′ = 0, · · · , j − 1, the subsequence

{yij′ , · · · , yij′+1−1} is an increasing-decreasing subsequence. We refer to the indices {i0, · · · , ij} as

the decomposition into increasing-decreasing subsequences.

We conjecture that given an arbitrary dataset, the optimal method of choosing ReLU gates that

will each relax two points is to decompose the sequence into increasing-decreasing subsequences and

relaxing each subsequence.

Conjecture 3.1.11. Let D be sampled from a regular polygon with a side length r. If we wish

to relax all points (x(1), ynd), · · · , (x(nd), ynd) simultaneously, using ReLU gates that each relax at

most two points, then there exists a decomposition of {y(1), · · · , y(nd)} into increasing-decreasing

subsequences such that the optimal choice of ReLU gates is the union of optimal ReLU gates that

relax each increasing-decreasing subsequence as prescribed by Corollary 3.1.6 and Conjecture 3.1.9.

Informally, we also expect this solution to have a weight cost equal to or nearly equal to any

f ∈ RidgelessReLU(D).

3.2 Symmetric Dataset

In this section, we assume that the dataset is symmetric with respect to a line in the following sense:

Definition 3.2.1. A dataset D is symmetric with respect to a line ℓ = {x | a · x + b = 0} if for

any (x, y) ∈ D, we also have (x̃, y) ∈ D where x̃ is the reflection of x across ℓ.

ℓ

Figure 3.7: Example of a symmetric dataset D.

The key idea is that a symmetric dataset is roughly 1-dimensional. Indeed, when the data points

are projected to the line of symmetry ℓ, the dataset is still consistent. Then the natural question to

26

ask is whether the 1-dimensional solution from the projected space (that is, using only ReLU gates

perpendicular to ℓ) will also fit the 2-dimensional dataset, and if so, whether it will minimize the

weight cost.

In this section, we will first show that for any network that fits a dataset, which is symmetric

with respect to ℓ, we can construct another network that fits the data with the same weight cost

but is symmetric with respect to ℓ. Then we will show that replacing each pair of symmetric ReLU

gates with ones that are perpendicular to ℓ (if possible to do so) uses strictly less weight cost. We

will discuss the sufficient conditions of the dataset that allows all pairs of the ReLU gates to be

replaced, which will rule out any solution that is not 1-dimensional.

First let us define what it means for a ReLU network to be symmetric:

Definition 3.2.2. A 1-layer ReLU network f(x; θ) is symmetric with respect to a line ℓ = {x | a ·

x + b = 0} if for any ReLU gate W (2) [d(x,H)]+ that defines f , there exists another ReLU gate

W (2)
[
d(x, H̃)

]
+

that defines f with the same weight W (2), where H̃ is the reflection of H across ℓ.

H1

H̃1

H2 H̃2

H3

H̃3

ℓ

Figure 3.8: Example of a symmetric 1-layer ReLU network.

Theorem 3.2.3. If D is symmetric with respect to a line ℓ and f(x; θ) ∈ ReLU(D), then there

exists f̃(x; θ̃) ∈ ReLU(D) such that f̃ is symmetric with respect to ℓ and C(θ) = C(θ̃)

Proof. Let us decompose f(x; θ) into the sum of its ReLU gates:

f(x; θ) =

nh∑
i=1

W
(2)
i [d(x,Hi)]+ + a · x+ b(2)

For each i, let H̃i be the reflection of hyperplaneHi for the i-th ReLU gate and let Ã :=
{
x | ã · x+ b̃(2) = 0

}
27

be the reflection of the residual hyperplane A :=
{
x | a · x+ b(2) = 0

}
. Now define a new network

f̃(x; θ̃) =

nh∑
i=1

W
(2)
i

2
[d(x,Hi)]+ +

nh∑
i=1

W
(2)
i

2

[
d(x, H̃i)

]
+
+

a+ ã

2
· x+

b(2) + b̃(2)

2

Notice first that f̃ is a 1-layer ReLU network, with 2nh ReLU gates, that is symmetric with respect

to the line ℓ. Also for any (x, y) ∈ D, we have

f̃(x; θ̃) =
f(x; θ) + f(x̃; θ̃)

2
=
y + y

2
= y

which shows that f̃(x; θ̃) ∈ ReLU(D).

3.2.1 One Pair of Parallel Lines

In this part, in addition to the assumption that the dataset D is symmetric with respect to a line ℓ,

we further assume that they lie on a pair of parallel lines. That is, for any data point (x, y) ∈ D, it

is on one of the two lines ℓ1, ℓ2 where the two lines are parallel to ℓ.

Theorem 3.2.4. Assume D is symmetric with respect to ℓ and for any (x, y) ∈ D, we have x ∈ ℓ1∪ℓ2

where ℓ1, ℓ2 are parallel to ℓ. If a ReLU network f(x; θ) ∈ ReLU(D) consists only of a pair of distinct

ReLU gates H1,H2 that are symmetric to each other with respect to ℓ such that

f(x; θ) =W (2)
[
d(x, H̃1)

]
+
+W (2)

[
d(x, H̃2)

]
+
+ a · x+ b(2)

then there exists another ReLU network f̃(x; θ̃) that consists of at most two ReLU gates that are

perpendicular to ℓ such that f̃(x; θ̃) ∈ ReLU(D) and C(θ̃) < C(θ).

Proof. We prove the theorem in the following two cases:

Case 1 Consider the case where H1,H2 are also parallel to ℓ. In particular, H1,H2, ℓ1, ℓ2 are all

parallel to each other. Then for any (x(1), y(1)), (x(2), y(2)) ∈ D such that x(1),x(2) ∈ ℓ1, we have

d(x(1),H1) = d(x(2),H1)

Let d(ℓ1,H1) denote this common value. Similarly define d(ℓ1,H2), d(ℓ2,H1), d(ℓ2,H2) to be the

common distance from an appropriate data point to the corresponding hyperplane. Since ℓ2 and H2

28

are respectively the reflections of ℓ1 and H1 across ℓ,

d(ℓ1,H1) = d(ℓ2,H2) and d(ℓ1,H2) = d(ℓ2,H1)

This shows that for any (x, y) ∈ D, we have

f(x; θ) =W (2)
(
[d(ℓ1,H1)]+ + [d(ℓ2,H1)]+

)
+ a · x+ b(2)

Notice that the first term is a constant, so we can absorb it into the bias. Then if we define

f̃(x; θ̃) := a · x+
(
b(2) +W (2)

(
[d(ℓ1,H1)]+ + [d(ℓ2,H1)]+

))
(3.9)

then f̃ ∈ ReLU(D) and it does not use any ReLU gate. In particular, C(θ̃) = 0 < C(θ)

ℓ

ℓ1

ℓ2

H1

H2

d(ℓ1,H1)

d(ℓ2,H1)

d(ℓ1,H2)

d(ℓ2,H2)

Figure 3.9: Diagram of Case 1 in the proof of Theorem 3.2.4.

Case 2 Consider the general case where H1,H2 are not parallel to ℓ. First notice that H1,H2

cannot be perpendicular to ℓ. If they were, H1 = H2 and the two ReLU gates would not have been

distinct. For i, j ∈ {1, 2}, let Aij denote the intersection of ℓi and Hj . Define a ReLU gate H̃1 such

that it passes through A11 and A22 and H̃2 that passes through A12 and A21. Set the orientation of

these ReLU gates such that they make an acute angle γ ∈
(
0, π2

)
with both H1,H2. Alternatively,

the sum of their normal vectors should have the same direction as the sum of the normal vectors for

H1,H2.

Let (x, y) ∈ D. If x ∈ ℓ1, then

d(x, H̃1) =
d(x,H1)

cos γ
and d(x, H̃2) =

d(x,H2)

cos γ

29

Similarly, if x ∈ ℓ2, then

d(x, H̃1) =
d(x,H2)

cos γ
and d(x, H̃2) =

d(x,H1)

cos γ

Therefore, if we define

f̃(x; θ̃) = cos γ ·W (2)
[
d(x, H̃1)

]
+
+ cos γ ·W (2)

[
d(x, H̃2)

]
+
+ a · x+ b(2) (3.10)

then f̃ ∈ ReLU(D) and C(θ̃) = cos γ · C(θ) < C(θ).

A11A12

A21 A22

x

ℓ

ℓ1

ℓ2

H1

H2
H̃2 H̃1

d(x,H1)
d(x, H̃1)

γ

A11A12

A21 A22

x

ℓ

ℓ1

ℓ2

H1

H2
H̃2 H̃1

d(x,H2)

d(x, H̃2)
γ

Figure 3.10: Diagram of Case 2 in the proof of Theorem 3.2.4.

30

Let us now interpret Theorem 3.2.4 once we project our input space R2 onto ℓ. The main

observation in the proof was that the original ReLU network f , when restricted to the domain of

ℓ1, ℓ2, is precisely equivalent to a continuous piecewise linear function in the projected space, where

the breakpoints of the function are defined by Aij . Then we can decompose this function as a sum

of two ReLU components fi in R. The next main observation is that for each fi there is a unique

ReLU gate H̃i in R2 such that its image under the projection is equal to fi — in particular, H̃i

is perpendicular to ℓ. Theorem 3.2.4 states that using this pair of ReLU gates uses a strictly less

weight cost than the original pair of symmetric ReLU gates.

ℓ = ℓ1 = ℓ2
A12 = A21 A11 = A22

H̃2 H̃1

f

Figure 3.11: In Theorem 3.2.4, when the domain of f is restricted to ℓ1, ℓ2 and is projected onto ℓ, it
is equivalent to a continuous piecewise linear function with 2 breakpoints. The slope of the function
is respectively 0,W (2), 2W (2) from left to right.

Notice that this construction does not take into account how the dataset D is actually distributed

in the projected space. That is, it is the most general choice of ReLU gates that will work for an

arbitrary dataset D. However, consider a specific case where there are no points on ℓ1 between A12

and A11 (equivalently, no points on ℓ2 between A21 and A22). Then Figure 3.12 shows that a single

ReLU gate also interpolates the dataset in the projected space. The ReLU gate H̃ in the original

space is perpendicular to ℓ and passes through A, the intersection between H and ℓ.

We formally introduce the result in the following theorem.

Theorem 3.2.5. Assume D and f(x; θ) ∈ ReLU(D) satisfy the conditions of Theorem 3.2.4. Ad-

ditionally, if d(x,H1) · d(x,H2) ≥ 0 3 for any (x, y) ∈ D, then there exists another ReLU network

f̃(x; θ̃) that consists of at most one ReLU gate that is perpendicular to ℓ such that f̃(x; θ̃) ∈ ReLU(D)

and C(θ̃) < C(θ).

3This is equivalent to saying sgn(d(x,H1)) = sgn(d(x,H2)) or d(x,H1) = 0 or d(x,H2) = 0. It allows x to be on
one of the hyperplanes.

31

ℓ = ℓ1 = ℓ2
A12 = A21 A11 = A22

H̃2 H̃1

f

A

H̃

Figure 3.12: If no point existed on ℓ1 between A12 and A11 (equivalently, no points on ℓ2 between
A21 and A22), then the dataset can be interpolated by a single ReLU gate.

Proof. Let A be the intersection between H and ℓ, and let H̃ be the hyperplane that is perpendicular

to ℓ and goes through A. For any x, we have

d(x, H̃1) + d(x, H̃2) = 2d(x, H̃) (3.11)

At the same time,

d(x,H1), d(x,H2) ≥ 0 =⇒ d(x, H̃1), d(x, H̃2) ≥ 0 =⇒ d(x, H̃) ≥ 0

d(x,H1), d(x,H2) ≤ 0 =⇒ d(x, H̃1), d(x, H̃2) ≤ 0 =⇒ d(x, H̃) ≤ 0

(3.12)

By (3.11) and (3.12), we can rewrite (3.10) as

f̃(x; θ̃) = 2 cos γ ·W (2)
[
d(x, H̃)

]
+
+ a · x+ b(2) (3.13)

3.2.2 General Case

In this part, we now consider the general case where D is symmetric, without the additional as-

sumption that all data points lie on a single pair of parallel lines.

For each (x, y) ∈ D, we can draw a line ℓx that goes through x and is parallel to ℓ. By the

assumption that D is symmetric, we know that the collection of these lines will be form a set of

symmetric pairs of lines {(ℓn,1, ℓn,2)}. For each of these pair of symmetric lines, we can apply a

32

A1,11A1,12

A1,21 A1,22

A2,11A2,12

A2,21 A2,22

ℓ

ℓ1,1

ℓ1,2

ℓ2,1

ℓ2,2

ℓ3,1

ℓ3,2

H1

H2

H̃1,2 H̃1,1H̃2,2 H̃2,1

Figure 3.13: Diagram of D that is symmetric with respect to ℓ. Data points (bold black) lie on one
of the pairs of symmetric lines (ℓn,1, ℓn,2).

similar analysis as in the previous section. In particular, let An,ij be the intersection between ℓn,i

and Hj . Let H̃n,1 be the hyperplane that goes through An,11 and An,22 and let H̃n,2 be the one

that goes through An,12 and An,21. When we consider the projected space, the function f on the

projected space behaves differently, when the domain is restricted to a different pair (ℓn,1, ℓn,2) of

symmetric lines. Specifically, the function should have two breakpoints, respectively at An,12 = An,21

and An,11 = An,22, but the projection of these points are different from each choice of n.

ℓ = ℓn,1 = ℓn,2
A1,12

A1,21

A1,11

A1,22

A2,12

A2,21

A2,11

A2,22

A3,12

A3,21

A3,11

A3,22

H̃1,2 H̃1,1H̃2,2 H̃2,1H̃3,2 H̃3,1

f

Figure 3.14: When the domain of f is restricted to ℓn,1, ℓn,2 and is projected onto ℓ, it is equivalent
to a continuous piecewise linear function with 2 breakpoints at An,12 = An,21 and An,11 = An,22.

33

Figure 3.14 shows the general version of Figure 3.11. When the domain of f is restricted to

each pair (ℓn,1, ℓn,2), it is equivalent to a continuous piecewise linear function with 2 breakpoints at

An,12 = An,21 and An,11 = An,22. But each restriction results in a different function on the projected

space. This hints that if we have data points between An,12 = An,21 and An,11 = An,22, then it is

generally not possible to replace the ReLU gates H1,H2 with ones that are perpendicular to ℓ.

Proposition 3.2.6. Given a line ℓ, there exist D and f ∈ ReLU(D) that are symmetric with respect

to ℓ such that there is no f̃ ∈ ReLU(D) that consists only of ReLU gates perpendicular to ℓ.

Proof. Let ℓ be the x1-axis. That is, ℓ = {x | (0, 1) · x = 0}. If we define D = {(x(i), y(i))}3i=1 where

the three data points are given as

x(1) = (0, 0), y(1) = 0

x(2) = (0, 1), y(2) = 1

x(3) = (0,−1), y(3) = 1

Then if we define f : R2 → R as follows

f(x; θ) =
√
2

[(
1√
2
,
1√
2

)
· x
]
+

+
√
2

[(
1√
2
,− 1√

2

)
· x
]
+

we have f ∈ ReLU(D). Now assume to the contrary that there is another network f̃ ∈ ReLU(D)

f̃(x; θ̃) =

nh∑
i=1

W
(2)
i

[
d(x, H̃i)

]
+
+ a · x+ b(2)

where each H̃i are all perpendicular to ℓ. However, since x(i) are colinear and the line through the

three points is perpendicular to ℓ, we have for any i

d(x(1), H̃i) = d(x(2), H̃i) = d(x(3), H̃i)

At the same time, the residual connection x 7→ a · x+ b(2) is linear and 2x(1) = x(2) + x(3) so

2(a · x(1) + b(2)) = (a · x(2) + b(2)) + (a · x(3) + b(2))

which suggests that we should have f̃(x(1); θ̃) = f̃(x(2); θ̃) = f̃(x(3); θ̃), but this is against our

assumption that f̃ ∈ ReLU(D). This is the desired contradiction.

34

The main bottleneck in Proposition 3.2.6 was that in the region between H1,H2, f is inconsis-

tent when projected to ℓ. Therefore, if we had any data point in the region, we cannot perfectly

reconstruct the function using only ReLU gates perpendicular to ℓ. However, it is possible if we

remove all such data points.

Theorem 3.2.7. Assume D is symmetric with respect to ℓ. If f ∈ ReLU(D) consists only of

a pair of distinct ReLU gates H1,H2 that are symmetric to each other with respect to ℓ and if

d(x,H1) · d(x,H2) ≥ 0 for any (x, y) ∈ D, then there exists another ReLU network f̃(x; θ̃) that

consists of at most one ReLU gate that is perpendicular to ℓ such that f̃(x; θ̃) ∈ ReLU(D) and

C(θ̃) < C(θ).

Proof. The choice of ReLU network f̃ as in (3.13) suffices for the proof.

3.2.3 Main Theorem

We are now ready to present the main theorem of this section.

Theorem 3.2.8. Let D be symmetric to ℓ and f ∈ ReLU(D). If f contains at least one ReLU gate

H that is not perpendicular to ℓ and if one of the following conditions is satisfied:

1. There exist two lines ℓ1, ℓ2 parallel to ℓ such that for any (x, y) ∈ D, x ∈ ℓ1 ∪ ℓ2;

2. For any (x, y) ∈ D, d(x,H)) · d(x, H̃) ≥ 0, where H̃ is the reflection of H across ℓ,

then f ̸∈ RidgelessReLU(D).

Proof. By Theorem 3.2.3, we can construct a symmetric network f̃(x; θ̃) ∈ ReLU(D) with the same

weight cost as f . In particular, f̃ contains both H and H̃. Let g denote the ReLU network, consisting

only of H and H̃. Then Theorem 3.2.4 and Theorem 3.2.7 guarantees that there is another pair g̃

of ReLU gates that use strictly less weight cost such that g = g̃ on D. Replacing g with g̃ in f̃ will

return another interpolant of D but will use strictly less weight cost. Therefore, f̃ does not have the

minimum weight cost among the ReLU networks in ReLU(D) and nor does f .

35

Bibliography

[1] P. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and struc-

tural results. In The Journal of Machine Learning Research, volume 3, pages 224–240, 06

2001.

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,

P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,

A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,

B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Lan-

guage models are few-shot learners. In Advances in Neural Information Processing Systems,

volume 33, pages 1877–1901, 2020.

[3] G. V. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of

Control, Signals and Systems, 2:303–314, 1989.

[4] B. Hanin. Ridgeless interpolation with shallow relu networks in 1d is nearest neighbor curvature

extrapolation and provably generalizes on lipschitz functions, 2021.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pages 770–778, 06 2016.

[6] J. X. Juncai He, Lin Li and C. Zheng. Relu deep neural networks and linear finite elements.

Journal of Computational Mathematics, 38(3):502–527, 2020.

[7] B. Neyshabur, R. Tomioka, and N. Srebro. In search of the real inductive bias: On the role of

implicit regularization in deep learning, 2015.

[8] G. Ongie, R. Willett, D. Soudry, and N. Srebro. A function space view of bounded norm infinite

width relu nets: The multivariate case, 2019.

36

[9] OpenAI. Gpt-4 technical report, 2023.

[10] P. Savarese, I. Evron, D. Soudry, and N. Srebro. How do infinite width bounded norm networks

look in function space?, 2019.

[11] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of

events to their probabilities. In Measures of Complexity, pages 11–30. Springer International

Publishing, 1971.

[12] X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer. Scaling vision transformers. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages

12104–12113, June 2022.

37

