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Abstract

In the classical secretary problem, an online algorithm is given a stream of elements, each with a non-
negative value, and must decide whether to accept the element and terminate the algorithm, or to reject
it and reveal the next element. The goal of the algorithm is to maximize the probability of choosing the
element with the maximum value. The problem has also generalized to settings where the algorithm has to
accept an independent set in a matroid. The goal is to maximize the expected sum of values of elements in
the accepted independent set, or maximize the probability of choosing each element in the offline optimal
independent set.

In this project, we study the free-order matroid problem, where an algorithm is given both the structure
of a matroid and the power to determine an order in which to reveal values of elements. We begin by
establishing the negative result that no algorithm for the free-order matroid problem can be strongly (e −
Ω(1))-competitive. We then turn our attention to the strongly 4-competitive algorithm proposed by Jailet,
Soto, and Zenklusen [8], and show that the competitive analysis presented is tight in the general case.
Motivated by this, we propose an algorithm for the free-order matroid secretary problem that we hypothesize
is strongly e-competitive for any matroid.

We prove that our proposed algorithm indeed is strongly e-competitive on uniform matroids and on a
certain graphic matroid first proposed in [3] that is known to be an adversarial input to many algorithms. We
also discuss why analytically analyzing our algorithm is difficult. In addition, we provide numerical analysis
on randomly generated matroids of various types that supports our hypothesis. On all matroids that we
analyzed, we observe that the numerical evidence is consistent with the hypothesis that our algorithm is
e-approximate.

We also provide evidence that a particular generalization of the “virtual algorithm” described in [3] may
be strongly e-competitive when the rank of a matroid is significantly smaller than the universe size. However,
we also show experimental evidence that the algorithm fails to be e-competitive when the rank is comparable
to the universe size (e.g., when it is even some small constant of the universe size).

1 Background

1.1 Classical Secretary Problem
The secretary problem’s origin has been disputed but goes back at least fifty years. It is an important motivating
problem in optimal stopping theory that has seen many variants — each with their own applications, e.g. in
mechanism design — posed.

Ordinal Version. An online algorithm is given a set U . Each element u ∈ U has a value v(u) that is unknown
to the algorithm at the beginning of the problem, and the goal of the algorithm is to select one u ∈ U that
maximizes v(u). The algorithm is given a stream of values v(u), and each time it receives a new value, it needs
to irrevocably decide whether or not to choose that u. If it does, the algorithm will terminate with u as the
final answer; if not, it will wait for the next input to be provided. No element can be queried twice, and passed
elements may not be retroactively accepted.

Let u∗ ∈ U have the maximum value v(u∗). An online algorithm for the traditional secretary problem
obtains a competitive ratio of c if Pr[u = u∗] ≥ 1/c, where u is the element chosen by the algorithm, and the
probability is taken over a uniform random ordering of elements presented to the algorithm.

Cardinal Version. Same problem setting as above. Let u∗ ∈ U have the maximum value v(u∗). An online
algorithm for the traditional secretary problem obtains a competitive ratio of c if E[v(u)] ≥ v(u∗)/c, where u is
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the element chosen by the algorithm, and the expectation is taken over a uniform random ordering of elements
presented to the algorithm.

1.2 Matroid Secretary Problems
Definition 1.1. A tuple (U , I) is a matroid if I ⊆ P(U) and the following conditions hold

1. ∅ ∈ I.

2. If A ∈ I and A′ ⊆ A, then A′ ∈ I.

3. If A,B ∈ I and |A| > |B|, then there exists a y ∈ A \B such that B ∪ {y} ∈ I.

Usually, I is referred to as the set of independent subsets of the universe (or “ground set”) U .

There are at least three notable versions of the matroid secretary problem. Each roughly asks an online algo-
rithm to choose an independent set of elements of maximum value. They are as follows:

Oblivious Matroid Secretary Problem. This is the hardest variant of the problem. There is a matroid
M = (U , I) and an online algorithm is presented a stream of elements u ∈ U (potentially in adversarial order).
Each element is associated with a non-negative value v(u) and the goal of the algorithm is to select an indepen-
dent set S ∈ I that maximizes its total value v(S) :=

∑
u∈S v(u). When an algorithm is presented an element, it

learns its value; however, it must irrevocably decide whether or not it accepts the element in its answer. In other
words, passed elements may not be retroactively accepted, nor may accepted elements be retroactively removed
from the algorithm’s answer. In this variation, it will be guaranteed that any element presented will maintain
independence (but because of this, not all elements in U may be presented before the algorithm terminates). We
refer to this variant as “oblivious” because an online algorithm is totally oblivious to the structure of the matroid.

Structure-Conscious Matroid Secretary problem. This variant is a relaxation of oblivious matroid secre-
tary problem. The problem setting is the same as the oblivious case, but this time the online algorithm is given
the underlying matroid M = (U , I). The stream of elements u ∈ U may still be presented in adversarial order.

Free-Order Matroid Secretary Problem. This is a relaxation of the structure-conscious matroid secretary
problem. Again, the problem setup is the same, but in addition to the underlying matroid M = (U , I), the
algorithm is also allowed to choose any order in which to reveal elements’ values. In particular, the decision on
which value the algorithm reveals next may be based off of any values of previously seen elements. As usual,
upon discovering the value of some element, it must irrevocably decide whether or not to include it as part of
its final answer.

Notions of Competitiveness. Let S∗(M) be a max-value independent set in M = (U , I) and A be the
independent set of elements accepted by an online algorithm for any of the above matroid secretary problems.
There are two versions of metrics to evaluate the competitive ratio of such algorithm:

1. An algorithm is weakly c-competitive if E[v(A)] ≥ v(S∗(M))/c, regardless of the choice of M and values
assigned to each element of the matroid. Importantly, the expectation is taken solely over the algorithm’s
own randomness.

2. An algorithm is strongly c-competitive if Pr[u ∈ A] ≥ 1/c for any u ∈ S∗(M), regardless of the choice of
M and values assigned to each element of the matroid. Similarly, the probability is evaluated over the
algorithm’s own randomness.

From these definitions, it is clear that an algorithm that is strongly c-competitive is also weakly c-competitve,
but not necessarily the other way around.

1.3 Related Work
e-approximation Algorithm for Classical Secretary Problem. The optimal solution to the classical
secretary problem is folklore: when we have a stream of n secretaries, we first reject the first ⌊pn⌋ candidates,

2



where p ∈ [0, 1], but we store the maximum value of those candidates. Then we accept the first candidate that
has a greater value than the threshold given by the sample we accessed. Then the probability of accepting the
best applicant is

n∑
j=⌊pn⌋+1

1

n
· ⌊pn⌋
j − 1

=
⌊pn⌋
n

n∑
j=⌊pn⌋+1

n

j − 1
· 1
n

n→∞−→ p

∫ n

pn

dt

t
= −p log(p)

It is clear that this probability will obtain a maximum of 1
e when p = 1

e . Actually, it is known that this optimal
stopping algorithm obtains a better approximation ratio than all other algorithms. At a high level, this is
shown by first proving that any algorithm is dominated by a stopping time algorithm, and then showing that
the optimal number of samples for a stopping algorithm is ⌊n/e⌋ [6].

State-of-the-art for the Matroid Secretary Problem. There is no known constant-competitive (weakly
or strongly) algorithm for the oblivious or structure-conscious matroid secretary problems (see the next section
regarding the free-order model). However, many non-constant approximation ratios are known for even the
oblivious variant. A seminal result of Babaioff, Immorlica, Kempe, and Kleinberg [3] showcased a weakly
O(log ρ)-competitive algorithm — where ρ is the rank of the matroid — with a moderate constant factor (∼ 32).
This result was eventually improved to a weakly O(

√
log ρ)-competitive result, at the cost of an extremely large

constant factor (≥ 264) [4]. With the additional weaker assumption that the number of elements in the matroid is
known, the current state of the art [7] is a weakly O(log log ρ)-competitive algorithm with a high constant factor
(around 2500). For general matroids, the best strongly competitive algorithm is known to have competitive
ratio O(log ρ) [12].

Significant progress has also been made on specific matroid classes. Uniform matroids — where any subset
of [n] of size ≤ k = ρ is independent — admit a weakly 1 − O(1/

√
k)-competitive algorithm that is known to

be asymptotically optimal in k [9]. Uniform matroids are also known to admit a strongly 1 − O(
√
log k/k)-

competitive algorithm [12]. There are also simpler algorithms that are strongly e-competitive for all values of
k, though these may not be asymptotically optimal [3]. Graphic matroids — where elements are edges of a
graph and independent sets are acyclic subgraphs — are known to admit a 4-competitive algorithm [12], which
was an improvement upon the previously known 2e-competitive algorithm [11]. Laminar matroids — generated
from a laminar family of sets and constraints — admit a strongly 3

√
3-competitive procedure [12]. Transversal

matroids — where elements are nodes on one side of a bipartite graph and independent sets are sets of nodes
that can be perfectly matched — admit a strongly 8-competitive approximation [11].

4-approximation Algorithm for Free-Order Matroid Secretary Problem [JSZ]. In [8], a 4-approximation
for the free-order matroid secretary problem is proposed. For completeness, we reproduce it below:

1. For each element u ∈ U , flip a fair coin to determine whether or not to include it in a sample set S.
Request and reject each element in S, observing each of their values.

2. Find the max-value basis of S (subject to I). Let this basis be {X1, · · · , Xm}, where m = rank(S) and
v(X1) > v(X2) > · · · > v(Xm). Also denote P = U − S.

3. Initialize A = ∅, which will contain the algorithm’s answer, and a counter i = 1.

4. Let ∆i = span(X1, · · · , Xi) − span(X1, · · · , Xi−1). For all the elements u ∈ P ∩ ∆i enumerated in any
order, add u to A if and only if A ∪ {u} ∈ I and v(u) > v(Xi). Note: By convention, ∆m+1 =
U − span(X1, · · · , Xm) and v(Xm+1) = 0.

5. If i = m+ 1, then terminate; otherwise, increment i and go repeat step 4.

The original version of the paper was able to prove that the algorithm is 9-approximate. A simple analysis was
given in [1] to show that the algorithm is 4-approximate.

1.4 Motivation for Research
The strongest negative result to our knowledge is the following:

Theorem 1.4.1. No algorithm for the free-order matroid secretary problem can be strongly (e−Ω(1))-competitive.
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Proof. Consider the free-order matroid secretary problem on the matroid M = ([n], {{1}, · · · , {n}}). Clearly,
the max-value basis of M is just the max-value item out of [n]. By definition, an algorithm that is strongly
(e − Ω(1))-competitive must be able to select the max-value element i∗ (regardless of which one it is) with
probability at least 1/(e− Ω(1)). But if this is the case, then the probability of finding the max-value element
if given a uniform random permutation of weights will also be at least 1/(e−Ω(1)), which by [6] cannot be the
case.1 □

Remark: It is believed that no algorithm for the free-order matroid secretary problem can be weakly (e−Ω(1))-
competitive either. Professor Weinberg believes that similar techniques from reference [5] show that being
weakly c-competitive for a rank 1 matroid M implies being strongly c-competitive on M . If this is true, the
result above suffices to show that no algorithm for the free-order matroid secretary problem can be weakly
(e− Ω(1))-competitive either.

Let’s label the 4-approximate algorithm provided in [8] as JSZ (for Jaillet, Soto, and Zenklusen). It turns out
that the analysis of JSZ is tight if the enumeration order in step 4 is adversarially chosen.

Theorem 1.4.2. For every ϵ > 0, there exists a matroid M , a set of values v(·), and an enumeration order of
elements in each iteration of step 4 such that

1. The offline optimum achieves a payoff (total value) of 1.

2. With this enumeration order, JSZ achieves an expected payoff of 1
4 + ϵ

4 .

Proof. The counterexample, once again, is the 1-uniform matroid with n elements. Note that regardless of the
sample S, JSZ goes through exactly one iteration of step 4, where it considers all elements that are not present
in the sample. Without loss of generality, assume n is the max-value element and that n− 1 is the element of
second largest value. Assume v(n) = 1, and v(n − 1) = ϵ, where ϵ > 0 can be chosen to be arbitrarily small.
Clearly, n cannot be in S if the algorithm is to select n; this happens with probability 1/2. Now if n− 1 is also
not in S, then JSZ will always choose n− 1 as long as it enumerates n− 1 before n, since in this case the single
max-value basis element of S will have weight zero. Thus, the only case where it is guaranteed that n will be
picked by JSZ is when n /∈ S and n− 1 ∈ S. This happens with probability 1/4. Thus, the expected payoff of
JSZ with this enumeration order is 1

4 + ϵ
4 . □

Note, however, that the most natural enumeration in step 4 — a random order — immediately improves the
payoff of JSZ in the counterexample given in Theorem 1.4.2. Let us choose a total ordering of [n], σ, so that
v(σ(1)) > v(σ(2)) > · · · > v(σ(n)). Of course, the true max-value basis will be the singleton set {σ(1)}. Now if
σ(i) is the element of maximal value in the sample S, there is a 1

2(i−1) chance that JSZ correctly chooses σ(1)

as its answer. (The 1/2 is the probability that σ(i) is not in S, and the 1/(i− 1) is the probability that σ(1) is
the first element to appear in a uniform random permutation of the elements in {j | v(j) > v(σ(i))}.) So the
probability that σ(1) is chosen is

1

2

n+1∑
i=2

1

(i− 1) · 2min(i−1,n−1)
>

1

2
ln 2

with equality as n → ∞. In fact, if the sample probability is changed from 1/2 to 1/e, then we see that this
probability, equal to p

∑n+1
i=2 (1−p)min(i−1,n−1)/(i−1) ≥ −p ln p is maximized and tends to 1/e as n → ∞. This

leads to the following conjecture:

Conjecture 1.4.3. The algorithm JSZ(e) — which samples each element of U into S with probability 1/e and
always enumerates candidates in each iteration of step 4 in uniform random order — but otherwise carries out
the same steps as JSZ, is strongly e-competitive.

1It is important to note that this probability is taken jointly over the algorithm’s own probability, as well as that arising from
the random ordering of elements by weight.
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2 Positive Results for JSZ(e)
As noted before, Conjecture 1.4.3 holds for the case of 1-uniform matroids. It also holds in some other special
cases. For the results that follow, we will be referring to steps of JSZ(e) exactly as we do in the previous section:
for example, when we refer to “step 4” of JSZ(e), we are referring to the loop that iterates through the {∆i}
one-by-one, trying to find elements to add to its answer.

2.1 Uniform Matroids
Theorem 2.1.1. JSZ(e) is strongly c(n, k)-competitive whenever M is a k-uniform matroid of n elements,
where

1

c(n, k)
=

k−1∑
j=0

(
n− 1

j

)
pj(1− p)n−j min

(
1,

k

n− j

)
+

n∑
i=k+1

(
i− 2

k − 1

)
pk(1− p)i−k min

(
1,

k

i− k

)
Proof. We will consider two cases: when the sample has less than k elements, and when it has at least k
elements. First, when the sample has j < k elements, then the max-weight basis of S is itself. Also, P ∩∆i = ∅
for any i ≤ j. The first time we consider any element in P is at the (j + 1)-th iteration, where all elements of
P are considered with equal probability. So for a specific max-weight element u∗ in the universe to be accepted
by the algorithm, it cannot be in the sample, and it should be chosen in the last iteration. The probability that
|S| = j given u∗ ̸∈ S is

(
n−1
j

)
pj(1−p)n−j−1, and the probability that u∗ is chosen given all the preceding events

is min
(
1, k

n−j

)
. Therefore,

Pr[u∗ accepted, sample has j elements] =
(
n− 1

j

)
pj(1− p)n−j min

(
1,

k

n− j

)
The second case is when the sample has at least k elements. Then the max-weight basis of S consists of the top
k elements. Then the first time we consdier any element in P is at the k-th iteration, where all elements of P
with value greater than the top k-th element of S are considered. So for a specific max-weight element u∗ to
be accepted, it cannot be in the sample, and it should be chosen in this iteration. The probability that the top
i-th element in the universe is the top k-th element, given u∗ ̸∈ S is

(
i−2
k−1

)
pk(1 − p)i−k−1, and the probability

that u∗ is chosen given all the preceding events is min
(
1, k

i−k

)
. If we sum the probability over all i > k, then

Pr[u∗ accepted, sample has at least k elements] =
n∑

i=k+1

(
i− 2

k − 1

)
pk(1− p)i−k min

(
1,

k

i− k

)
Adding the probabilities for the two cases yields

Pr[u∗ accepted] =
k−1∑
j=0

(
n− 1

j

)
pj(1− p)n−j min

(
1,

k

n− j

)
+

n∑
i=k+1

(
i− 2

k − 1

)
pk(1− p)i−k min

(
1,

k

i− k

)
completing the proof.

Numerical Behavior of c(n, k). For a small k with respect to n, the first term dominates the sum, whereas
for a large k, the second term takes over. In any case, it seems to be that 1/e ≤ c(n, k) ≤ 1− 1/e. We provide
numerical evidence in Figure 1.

2.2 Theoretical Evaluation of JSZ(e) on Particular Graphic Matroids
Consider the graph G = (V,E) where V = {u1, u2} ∪ {v1, v2, · · · , vn} and E = E0 ∪ E1 ∪ E2 where E0 =
{e0 = (u1, u2)}, E1 is the set of all edges of the form e1j = (u1, vj) and E2 is the set of all edges of the form
e2j = (u2, vj). The edge e0 is given infinite weight, and all edges eij ∈ Ei has weight i for any j ∈ [n]. This
graph and similar variants are known to be a bad input for some simple heuristics, e.g. for a simple greedy
algorithm that adds an edge if and only if it would be in the max-value basis of all the elements seen so far [3].
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(a) Plot of c(n, k) for various values of n. (b) Plot of f(n) = mink c(n, k) for 5 ≤ n ≤ 750.

Figure 1: Numerical simulations to suggest that limn→∞ mink c(n, k) ≥ 1/e. The dashed line is plotted at
y = 1

e .

Theorem 2.2.1. Every element in the max-weight basis of the matroid is chosen by JSZ(e) with probability
0.43 > 1/e for this specific input. In particular, the max-weight element is chosen with probability 1 − q

e , as
n → ∞.

Proof. First, the optimal offline solution is clearly the set E0∪E2, since adding any edge e1j ∈ E1 to this subset
will create the cycle u1 → u2 → vj → u1.

Now we wish to prove that the online algorithm will select each optimal element with probability of at least
1
e . First consider the element e0. For it to be chosen by the online algorithm, it cannot have been chosen in the
sample. This happens with probability 1− 1

e . Now further assume that e0 was not in the sample. Let

J1 = {j ∈ [n] : (u1, vj) ∈ E1 ∩ S} = {j1,1, j1,2, · · · , j1,k1
}

J2 = {j ∈ [n] : (u2, vj) ∈ E2 ∩ S} = {j2,1, j2,2, · · · , j2,k2
}

Consider constructing the max-weight basis of the sample set S with the greedy algorithm. Let S1, S2, · · · , Sk

be the sequence of independent sets that the algorithm obtains during computing the max-weight basis. Notice
that the greedy algorithm will first add all elements of E2∩S. Notice that the span of these elements, intersected
with P , is always empty. That is

span(Si) ∩ P = ∅ i = 1, 2, · · · , k1

So there are no elements in P that we will consider. After adding all elements of E2 ∩ S, the algorithm will
start adding elements of E1 ∩ S to the max-weight basis. Let k′ be the first index such that Sk \ Sk−1 = {e1j}
for some j ∈ J1 ∩ J2. For any i < k′, we see that

span(Si) ∩ P = ∅ i < k′

But once we add e1j , the span consists of the edge e0 and all the “partner edges” to all edges added so far to
the max-weight basis of the sample. That is,

span(Sk′) ∩ P = {e0} ∪ {e1j : j ∈ J2} ∪ {e2j : j ∈ J1, e1j ∈ Sk′−1}

Notice that even if we accept all edges in this span, we still have an acyclic graph. Therefore, e0 will be accepted
into the output. The only case this does not happen with certainty is when J1 ∩ J2 = ∅. This happens with
probability (1 − 1

e2 )
n because for each of vj , we can’t have both e1j and e2j in the sample. To sum up, the

probability that e0 is included in the output is

Pr[e0 chosen by the algorithm] =

(
1− 1

e

)
·
(
1−

(
1− 1

e2

)n)
n→∞−→ 1− 1

e
≃ 0.632 >

1

e

Indeed, the expression on the leftmost side is greater than 1
e for any n > 6.
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Now consider any edge e2j . First we need e2j to not be in the sample. Then we condition on whether e1j
was in the sample. If e1j was in the sample, then there is no way e2j will create a cycle with remaining edges
in P , so it will be accepted in the output with certainty. If e1j was not in the sample, then the two edges e1j
and e2j will both be considered in the last step of the algorithm. e2j being considered before e1j is a sufficient
condition for adding e2j to the output.2 In equation, the probability is bounded below by

Pr[e2j chosen by the algorithm] ≥
(
1− 1

e

)
·
(
1

e
+

1

2

(
1− 1

e

))
≃ 0.432 >

1

e

completing the proof.

2.3 Discussion of Difficulty in Analyzing JSZ(e)
There are at least two reasons as to why reasoning about JSZ(e) may be difficult. First, the asymmetric sampling
probability prevents certain arguments of symmetry from holding. For example, in [1] the authors use a nice
observation to argue that a certain event (that would imply that an element is not spanned when the algorithm
isn’t encountered and therefore would be added) occurs with probability 1/2. This observation depended on the
fact that the sample S and unsampled elements P are indistinguishable if the sampling probability is 1/2. One
future avenue of research could be to simply study the original JSZ algorithm that samples with probability
1/2, but still randomizes the order in which certain elements are considered in the loop of step 4.

The second reason is that it is both 1) difficult to predict the max-value basis of a random sample of a general
matroid, and 2) difficult to control the impact of the algorithm’s own randomness. When the given matroid is
rank 1, both of these tasks are extremely straightforward, and hence a tractable probability calculation can be
obtained. Why? The max-value basis was simply the maximum element of the sample, and the algorithm’s
randomness did not have any impact on which elements we considered in the only iteration of step four of
JSZ(e).

In general, however, if two samples S1 and S2 differ by some s elements, the max-value bases of the
two samples could differ by up to s elements. This could change the value of any of the ∆i (recall ∆i =
span{X1, · · · , Xi} − span{X1, · · · , Xi−1}) quite drastically (even if s = 1), making it difficult to compare the
performance of the algorithm if S1 were the sample versus if S2 were the sample. In particular, our rank-1 anal-
ysis of the chance that a max-value basis element y ∈ ∆i gets included in the particular iteration its considered
depended on it coming relatively early in the random ordering of ∆i the algorithm enumerates. This would
rely upon the sample basis element Xi to serve as a “cutoff” that would prevent elements of low value in ∆i

from being included. However, it is not straightforward in general to evaluate what would happen if one of the
elements y′ ∈ ∆i was actually in the sample, because this could change the max-value basis of the sample. That
could in turn result in different values for many ∆i in the modified run. If it were in fact true that the sequence
of ∆i considered would remain the same in response to the sample being perturbed by one element (or just
differ in a local sense that doesn’t totally change the entire order in which the algorithm considers elements),
then the analysis would become significantly easier.

3 Numerical Evaluation of JSZ(e)
In this section, we implement and empirically evaluate JSZ(e) on various matroids. We provide the code used
for all implementations and experiments at github.com/nalin1729/COS521_FinalProject.

3.1 Experiment Setup
For a particular matroid M = (U , I) with universe size |U| = n, we sample a uniformly random valuation
function v : U 7→ [0, 1] and run JSZ(e) t times. We record the ratio between the number of times each element of
U is present in the algorithm’s output and the number of trials, notated ft(u). For large t, ft(u) approximates
the probability that the algorithm outputs an independent set containing u. The worst case performance of the
algorithm is therefore captured by the minimum of ft over all elements in the optimal offline solution S∗(M).

The experiments are designed to verify Conjecture 1.4.3 (recall that this hypothesis that JSZ(e) is strongly
e-competitive as n → ∞). Since JSZ(e) is absolute weight-agnostic — in the sense that only the relative ordering

2Again, this is because any cycle that e2j is a part of necessarily includes e1j .
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of the elements by weight changes the behavior of the algorithm in expectation — and we are measuring the
probabilities of inclusion for the max-weight basis elements3, the actual weights that we assign to elements of
the matroid do not matter. Thus, the uniform random valuations come without loss of generality.

If Conjecture 1.4.3 holds, then we expect that for any u∗ ∈ U that is in the max-value basis S∗(M),

lim
t→∞

ft(u
∗) = P{u∗ included in JSZ’s answer} ≥ 1/e

for any matroid M and in particular,
min

u∗∈S∗(M)
lim
t→∞

ft(u
∗) ≥ 1/e

We test this hypothesis for various classes of matroids, as described in the next section.

3.2 Simulated Matroids
We implement JSZ(e) in Python and utilize a Matroid class from the SageMath toolkit. The specific classes of
Matroids we assess JSZ(e) on are as follows:

• Uniform Matroids. We vary the rank uniformly between 1 and |U|.

• Graphic Matroids. For a particular universe size n, we generate a random graph by sampling the
number of vertices m ∈ [⌈1+

√
1 + 8n/2⌉, n] and including n edges at all locations with equal probability.4

Independence of a set is then implemented by looking for cycles.

• Transversal Matroids. We generate random bipartite graphs (L,R,E) according to three parameters:
|L|, |R|, and p, where p is the probability that any given edge from L to R is included. Independence of
set S ⊆ L is implemented by calculating a maximum matching from S to R (using max-flow) and checking
if the size of this matching is equal to |S|.

• Linear Matroids over Finite Fields. We generate n random vectors over Fn
p (for some prime p). We

add a mechanism to introduce dependence amongst vectors5 as follows: with some probability q a newly
generated vector will be independent of all previously generated vectors; otherwise, it will be set to a
(random) nonzero linear combination of a uniform random subset of the previously generated vectors.

• General Matroids. To generate random general matroids, we follow an expensive algorithm proposed
by Knuth [10] that is tractable for small universe sizes (n ≤ 15). With this methodology, every possible
matroid with |U| = n can be generated, but each such matroid isn’t necessarily sampled with the same
chance.

3.3 Statistical Analysis of Results
Figure 2 plots the distribution of Xt(M) := minu∈S∗(M) ft(u) with t = 1000 trials for various matroids M . One
will find in Figure 2 that by and large, most elements in the max-weight basis are included in the algorithm’s
answer at least 1/e of the time. We will explain observed deviations are not anomalies; in fact, they are to be
expected.
Figure 2a shows around 30% of the distribution of Xt(M) to lie below the threshold of 1/e. Recall from a
previous section that the exact probability of any max-value basis element of being included for the given
parameters is c(n, k) = c(200, k) ≥ 0.37 for any k ≤ n = 200. The minimum of c(200, k) is obtained around
k = 52, and c(200, k) ≈ 0.37 for around 40 ≤ k ≤ 90 (i.e. around 25% of the time due to ranks being chosen
uniformly at random from the range [1, n]). In these cases, the distribution of the random variable

Yu :=
1

t

t∑
j=1

1u included in trial j

tends to a normal distribution with mean ≈ 0.37 and standard deviation ≈
√

(0.37)(1− 0.37)/1000 ≈ 0.015.
Thus, Xt(M) will be the minimum of the Yu, which are approximately normally distributed and are at least 40
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(a) 100 Uniform Matroids (n = 200)
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(b) 100 Graphic Matroids (n = 100)
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(c) 30 Transversal Matroids (|L| = n ∈ {25, 50}), |R| ∈
{25, 50}, p ∈ {0.3, 0.5})
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(d) 300 Linear Matroids (n = 15,F37)

0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48
Minimum Ratio of Optimal Secretaries

0

5

10

15

20

De
ns

ity

(e) 100 General Matroids (n = 15)

Figure 2: Distribution of the ratio of the least frequently occurring element in the optimal offline solution. The
data is gathered over with t = 1000 trials of JSZ(e) on each matroid. The dashed line is plotted at x = 1

e .
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Figure 3: With the worst case rank of 52 if n = 200 according to Theorem 2.1.1, a distribution of the minimum
of 52 N (0.37, 0.0152) random variables.

in number. An approximation of this distribution is plotted in Figure 3 which emulates the results in Figure 2a
quite closely. As another sanity check, we can see that the minimum observed value, which is around 0.325, is
some 2.7 standard deviations from the mean. Since all the Yu have the same approximately normal distribution
D, we can view the experiment as drawing at least 40 × 100 = 4000 samples from D. By typical normal
distribution estimates, the expected number of observations 2.7 standard deviations below the mean out of 4000
samples is 12 (well above the true amount observed).

An essentially identical methodology can be used to explain all other observed values below 1/e. The only
thing to keep in mind is that if Conjecture 1.4.3 holds, the probability that any element of an optimal offline
solution is included in the algorithm’s output is at least 1

e . Estimates of variance can be obtained likewise, and
similar normal distribution estimates can be used from here.

Another thing to note is that when linear matroids are randomly generated, they are very likely to be similar
to uniform matroids. Therefore, it is reasonable to expect that the performance of the algorithm is dependent
on k, the rank of the matroid as in Figure 1. We divided the result into five categories based on the value of
k
n . Consistent with the earlier result, the competitiveness of the algorithm was nearest to e when k

n ∈ [0.2, 0.4),
but it decreased significantly as it grew larger. The graphs for are provided in Figure 6 in the Appendix.

4 Experimental Evaluation of Virtual Algorithm
In this section, we present another algorithm that we think is of interest. Reference [2] provides two algorithms
(“Virtual” and “Optimistic”) for the multiple choice secretary problem, where the algorithm chooses a fixed
number of k elements instead of 1. This is equivalent to the matroid secretary problem given a k-uniform
matroid. Our algorithm JSZ(e) is somewhat similar to the Optimistic algorithm, but it is known that the
Virtual algorithm is easier to analyze analytically than the Optimistic algorithm. Therefore, we propose a
generalization of the Virtual algorithm in hopes that it will yield a result that is easier to analyze. Consider the
following algorithm

1. Sample the first ⌊n
e ⌋ elements and store them in S.

2. Initialize R = S = {j1, · · · , j|R|}, where the elements are in decreasing order of weight.

3. Find the max-weight basis {X1, · · · , Xm} for S where m = rank(S) and the elements are in decreasing
order of weight. Also denote P = U − S.

4. Initialize A = ∅, which will contain the algorithm’s answer, and a counter i = 1

5. Let ∆i = span(X1, · · · , Xi)− span(X1, · · · , Xi−1). For all elements u ∈ P ∩∆i enumerated in a random
order, add u to A if and only if A ∪ {u} ∈ I and v(u) > v(ji) and ji ∈ S. Add element u to R while
maintaining the invariant that R is in decreasing order of values

3As opposed to calculating the ratio of the weight of JSZ(e)’s answer and the weight of the optimal set.
4The smallest value of m is calculated by setting

(m
2

)
= n. The largest value is chosen to avoid overly sparse graphs.

5Otherwise, uniformly generating vectors almost certainly yields a full-rank matroid.
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(a) 10 Graphic Matroids (n = 101) (b) 10 Graphic Matroids; 1
2
|E| ≤ |V | ≤ |E| (n = 101)

(c) 10 Graphic Matroids; |E| ≤ |V | ≤ 2 |E| (n = 101)

Figure 4: Numerical analysis suggests that the algorithm works better for sparse graphs with low rank

6. If i < m, increment i and go repeat step 5.

7. For all remaining elements i of P , accept if and only if |R| < k or jk ∈ S where k is the rank of U

Similar to the earlier section, we also analyzed this algorithm numerically. First, we generated 10 random
graphic matroids with 3 different parameters. The first graph in 5 shows the results for 10 random graphic
matroids; the second graph is for 10 random graphic matroids where 1

2 |E| ≤ |V | ≤ |E|; and the third is for 10
random graphic matroids where |E| ≤ |V | ≤ 2 |E|. As the graph gets sparser, the rank of the matroid should
also decrease. This numerical analysis suggests that the algorithm performs better on graphic matroids of low
rank.

We also ran numerical analysis on uniform matroids with n = 100 elements, first with rank k = 3 and also
with rank k = 50. The results show no significant difference between the two examples. Further research is
needed to properly understand the cases where this algorithm performs well.

5 Conclusion
In this project, we showcased a few negative results: that no algorithm for the free-order matroid secretary
problem could be strongly (e−Ω(1))-competitive, and that the analysis of the algorithm presented in [8] is tight.
We then proposed a modified version of the algorithm that we hypothesize is e-competitive for all matroids (as
the universe size tends to infinity), and provide some theoretical and experimental evidence for this claim.
Finally, we ran lightweight experiments on a generalization of the virtual algorithm of [3] for matroids.

Further research would be needed to analytically verify that the c(n, k) ratio we obtained for uniform matroids
is indeed above 1/e for any pair of n and k. Similarly, more thorough analytical analysis would be required to
prove that our numerical analysis is true for any matroid.
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(a) 100 Uniform Matroids (n = 100, k = 3) (b) 100 Uniform Matroids (n = 100, k = 50)

Figure 5: Numerical analysis suggests that the performance of the algorithm is irrelevant of the rank
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A Rank Breakdown of JSZ(e) Linear Matroid Simulation
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(a) Rank k ∈ [0, 20)
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(b) Rank k ∈ [20, 40)
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(c) Rank k ∈ [40, 60)
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(d) Rank k ∈ [60, 80)
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(e) Rank k ∈ [80, 100]

Figure 6: A breakdown of the results for 300 linear matroids with universe size n = 100, presented in Figure
2d, according to the matroid’s rank. As with the explanation of section 3.3, we hypothesize that the reason for
a relatively large proportion of the observations lying below the 1/e threshold is due to the simulated matroids
being closer to uniform for lower ranks (less than half of the universe size).

13


	Background
	Classical Secretary Problem
	Matroid Secretary Problems
	Related Work
	Motivation for Research

	Positive Results for JSZ(e)
	Uniform Matroids
	Theoretical Evaluation of JSZ(e) on Particular Graphic Matroids
	Discussion of Difficulty in Analyzing JSZ(e)

	Numerical Evaluation of JSZ(e)
	Experiment Setup
	Simulated Matroids
	Statistical Analysis of Results

	Experimental Evaluation of Virtual Algorithm
	Conclusion
	Rank Breakdown of JSZ(e) Linear Matroid Simulation

