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Abstract

In this paper, we propose a double fine-tuning
method for an email content extraction task
with limited availability for annotated data.
We compare the results of 1) a task-adaptive
approach where a pre-trained model is first
fine-tuned on a large dataset with a simi-
lar task as the target dataset before being
fine-tuned again on the small target dataset
and 2) a domain-adaptive approach where the
dataset for the first fine-tuning stage is re-
placed with one with a similar data domain
as the target dataset. We observe that both
approaches are effective at aligning the pre-
trained model for the downstream task. The
code is available at: https://github.com/
minniie/email_content_extraction.

1 Introduction

There are 392 undergraduate student organizations
at Princeton University. On an average day, a
Princeton student receives around 30-40 emails pro-
moting events that these organizations host. The
overwhelming amount of information present in
the emails often discourage students from reading
the emails in detail. Our work aims to extract key
information from each of the emails and present
it in a digest format. Based on the output of our
email, users may choose to cherry pick the selected
number of emails they wish to read in detail.

2 Background

2.1 Information Extraction via
Question-Answering

Extracting information from a given passage is of-
ten performed in a question-answering (QA) set-
ting — a question about the passage is appended
at the end of the input, and the model is expected
to output the answer to the question. When the an-
swer exists in its exact form in the passage, we say
that the task is extractive, and encoder-only Trans-
former models like BERT (Devlin et al., 2019) and

RoBERTa (Liu et al., 2019) can achieve state-of-the
art results by predicting the start and end indices
of the answer substring. When the answer does not
exist in the passage, we say that the task is gen-
erative, and we need the text generation abilities
of decoder-based Transformer models like GPT
(Radford et al., 2018) and GPT-2 (Radford et al.,
2019).

2.2 Double Fine-tuning

One recent trend of NLP research has been to take
a model pre-trained on a broad range of domains
(Devlin et al., 2019; Liu et al., 2019; Radford et al.,
2018, 2019) and to fine-tune it on a specific task
or domain. However, when there is limited avail-
ability of target data, fine-tuning the model on the
target data can be difficult. Instead, we leverage
the idea of double fine-tuning from Jeawak et al.
(2020); Anonymous (2022); Ko and Choi (2020),
where the pre-trained model is first fine-tuned on a
large dataset that is similar (same task or same do-
main) to the desired target dataset, then fine-tuned
again on the small target dataset.

2.3 Previous Works

In alignment with previous works, our model can
be understood as performing a short-answer extrac-
tive 1 QA task on an email data domain. There
are works that perform a similar task on a different
domain, or performs a different task on a similar do-
main. However, to the best of our knowledge, there
is no previous work that performs a short-answer
QA task on an email dataset.

Similar task but different domain Stanford
Question-Answering Dataset (SQuAD) (Rajpurkar
et al., 2018) is an extractive question-answer task,

1Even though some answers are formed by concatenating
substrings drawn from multiple parts of the passage, all an-
swers are entirely contained in the input sequence. We abuse
the terminology slightly and refer to this task as extractive.
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where the passages are sampled from Wikipedia
articles.

Similar domain but different task EmailSum
(Zhang et al., 2021) is a summarization task, where
the input data is drawn from existing email col-
lections: Enron email corpus (Klimt and Yang,
2004), Avocado Research Email Collection (Oard
et al., 2015), and W3C email corpus (Craswell
et al., 2005).

3 Approach

For our email content extraction model, we pro-
pose double fine-tuning a decoder-based generative
model. Since some of the answers span across
different locations in the email, we need to lever-
age the text generation abilities of a decoder. We
compare the performance of a task-adaptive ap-
proach, where the first fine-tuning is performed on
a dataset with a similar task (extractive QA) as the
target dataset (Princeton email), against a domain-
adaptive approach, where the first fine-tuning is per-
formed on a dataset with a similar domain (email).
For both approaches, the second fine-tuning will
be performed solely on the target dataset.

4 Experimental Setup

4.1 Data Preprocessing
4.1.1 SQuAD
SQuAD is downloaded from Huggingface. We use
the full dataset with the original train and validation
splits. Following conventional approach, the ques-
tion is appended at the end of the context paragraph,
where a special end-of-text token is inserted before
and after the question. The resulting statistics for
SQuAD is shown in Table 1.

# Train Samples # Valid Samples
87,599 10,570

Table 1: Statistics for SQuAD.

4.1.2 Enron Email Corpus
Enron email corpus is downloaded from https:
//www.cs.cmu.edu/~enron/. We extract only the
email content (body and subject line) and discard
all other metadata (sender, recipient, etc.). From
the email body of forwarded emails, we delete the
header that contains metadata about the original
email. Emails that are too short (less than 1000
characters) or too long (more than 5000 characters)

are discarded. To align the task in a QA format, the
input consists of the email body followed by the
question "What is the subject of this email?" (with
the end-of-text token before and after the question).
The expected output is the subject line of the email.
We perform a 4 : 1 split of the filtered dataset into
train and validation sets. The resulting statistics for
Enron emails dataset is shown in Table 2.

# Train Samples # Valid Samples
89,412 22,353

Table 2: Statistics for the Enron email corpus.

4.1.3 Princeton Email Dataset
We crawl promotional emails from our own Prince-
ton Gmail inbox using Google API. Approximately
500 emails sent through https://hoagie.io/ 2

during April 10-28, 2023 are initially collected.
Emails that are not promoting events are filtered
out. If there are multiple emails promoting the
same event, only one is chosen. From each remain-
ing email, both authors manually label 5 different
key information (title, hosting organization, loca-
tion, time, and guests of the event). For each piece
of information that exists in the email, 1 data point
is generated, totalling a maximum of 5 data points
per email. An example is shown in Table 3.

Email Hi everyone! MASA is excited to
host a Hari Raya dinner event on
Sunday, April 23 7.30 - 8.30pm.
Venue will be at Louis A Simp-
son B60. As usual there will be
lots of delicious local food! Please
RSVP here ASAP if you can make
it. Guests are welcome. Hope to
see you there! Best, Justin Ong

Title Hari Raya dinner event
Host MASA
Location Louis A Simpson B60
Time Sunday, April 23 7.30 - 8.30pm
Guest -

Table 3: Four data points are generated from this exam-
ple email from Princeton email dataset.

The input of each data point consists of the email
body, followed by the natural language question
corresponding to the type of content extracted from

2Hoagie Mail is a service to send promotional emails to
all undergraduate students via residential college listservs.
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the email (with the end-of-text token before and
after the question). The questions are shown in
Table 4.

Title "What is the title of the event?"
Host "What is the hosting organization

of the event?"
Location "Where does this event take

place?"
Time "When does this event take place?"
Guest "Who are the guests of this event?"

Table 4: Questions for each content type of Princeton
emails dataset.

The dataset is split into train and validation sets
with ratio of 4 : 1. The statistics of the final prepro-
cessed dataset is shown in Table 5.

# Emails # Train Samples # Valid Samples
198 615 153

Table 5: Statistics for Princeton emails dataset.

4.2 Model

We use GPT-2 Medium (355M parameters) (Rad-
ford et al., 2019) as the pre-trained base model for
our main experiment. In the first fine-tuning stage,
we take two copies of the base model and fine-tune
each separately on SQuAD and Enron email corpus.
In the second fine-tuning stage, we take each fine-
tuned copy and fine-tune it further on the Princeton
email dataset. Due to physical limitations, we trun-
cate the beginning of the input text as necessary if
the number of input tokens exceeds 512 for any of
the experiments.

4.3 Training Details

Each model is trained on SQuAD or Enron email
corpus for 10 epochs and on Princeton email
dataset for 20 epochs, where the gradient is com-
puted from the cross entropy loss on the generated
tokens. Batch size is fixed as 16 for both training
and evaluation, by choosing an appropriate batch
size per device and gradient accumulation step size.
Learning rate is chosen as 5 × 10−5 with linear
decay. AdamW (Loshchilov and Hutter, 2019) is
chosen as the optimizer. On a single NVIDIA Titan
RTX, the first fine-tuning takes approximately 18
hours and the second fine-tuning takes 20 minutes.

4.4 Evaluation Metric

We use the F1 score to evaluate the final model.
Let w(o) = w

(o)
1 · · ·w(o)

m be the output of the model
on a particular input and let w(g) = w

(g)
1 · · ·w(g)

n

be the gold answer. Then the precision is defined
as p = c/n and the recall is defined as r = c/m
where c is the number of words that appear both in
the gold answer w(g) and the output w(o). Then the
F1 score for the data point is computed as

F1(w(o),w(g)) :=
2pr

p+ r
(1)

and the F1 score for the dataset is computed as the
average of the individual F1 scores across all data
points. During evaluation, we remove all punctua-
tion marks, articles, and whitespace before convert-
ing the output and groundtruth text to lowercase.

5 Results

5.1 First Fine-tuning

5.1.1 SQuAD

Figures 3 and 5 show the training and evalua-
tion losses when first fine-tuning the base model
on SQuAD. The training loss generally decreases
throughout the 10 epochs, with most of the de-
crease coming in big steps at the end of each epoch.
This suggests that some degree of memorization of
training examples is happening. Also, the evalua-
tion loss decreases only during the first epoch and
increases afterwards. This also suggests that the
model overfits after the first epoch. Therefore, we
choose the checkpoint at 1 epoch to be the model
we use for the second fine-tuning stage.

5.1.2 Enron Email Corpus

Figures 4 and 6 show the training and evaluation
losses when first fine-tuning the base model on the
Enron email corpus. The training loss decreases
steadily over the 10 epochs, while the evaluation
loss decreases sharply until 4 epochs and increases
slightly for the remainder of training. We choose
the checkpoint at 4 epochs to be the model we use
for the second fine-tuning stage. We conjecture
that Enron email corpus requires more epochs for
convergence than SQuAD because the task is given
as generative QA, which is more difficult for the
model to perform than an extractive version.



5.2 Second Fine-tuning

5.2.1 Training and Evaluation Loss
Figures 7 and 9 show the training and evaluation
losses when second fine-tuning each of the first fine-
tuned models on the Princeton email dataset. For
both models, the training loss decreases steadily
throughout 20 epochs for both SQuAD-based and
Enron-based models, and the evaluation loss de-
creases sharply until 1 or 2 epochs and steadily
increases afterwards. Whereas the exact values of
the training loss are also almost identical between
the two models, the evaluation loss is consistently
lower for the SQuAD-based model. Also, we ob-
serve that the evaluation loss of the Enron-based
model increases faster for later epochs than the
SQuAD-based model.

5.2.2 F1 Score
Figure 1 shows the F1 scores at each training step
for both SQuAD-based and Enron-based models.
Throughout training, the SQuAD-based model con-
sistently outperforms the Enron-based model. For
both models, the F1 scores increase sharply for the
first few epochs and increase gradually afterwards,
even after the models start overfitting. This is most
likely because the cross entropy loss compares the
model output to the gold answer token-wise, and
hence is highly sensitive to variations or alternate
forms of the output. On the other hand, the F1

score only takes into account the amount of over-
lap between the model prediction and gold answer,
and hence is more resilient to alternate forms of
outputs. The memorized information from the first
few epochs may make it harder for the model to
make the correct prediction for each token, but it
allows the model to generate an output that is more
accurate overall. For the second fine-tuning phase,
we select the checkpoint with the highest evaluation
F1 score.

Figure 2 shows the F1 scores of SQuAD-based
and Enron-based models before any fine-tuning or
after each stage of fine-tuning. Each stage of fine-
tuning is shown to improve the model performance
on email content extraction. Both task-adaptive
and domain-adaptive approaches prove to be effec-
tive at aligning the pre-trained model for the target
downstream task. Of the two approaches, the task-
adaptive approach exhibits a slightly better trans-
ferability between the two fine-tuning stages. This
is likely because extractive QA setting of SQuAD
encourages the model to find the output from the

Figure 1: Evaluation F1 score when fine-tuning SQuAD-
based (yellow) and Enron-based (gray) models on
Princeton email dataset.

provided input.

Figure 2: Evaluation F1 score of SQuAD-based (yellow)
and Enron-based (gray) models at different stage of
training.

5.2.3 Sample Generations
Table 6 shows a sample output of the SQuAD-
based model before and after being fine-tuned on
the Princeton email dataset. The SQuAD-based
model, before the second fine-tuning, is able to un-
derstand that its task is to identify a location name
inside the email, but fails to identify the correct
Princeton-specific location name. Fine-tuning it on
the Princeton email dataset allows it to learn the
specific terminology pertinent to Princeton commu-
nity.

5.3 Ablation on Model Size

We run the same set of experiments on GPT-2 Small
(124M parameters) and GPT-2 Large (774M pa-
rameters) and report the F1 scores in Table 7. We
observe a similar trend as with GPT-2 Medium.
Whereas the performance of GPT-2 Small under-
performs the other models under every setting as



Email
Hey Princeton! The Cellists of Princeton Uni-
versity have been preparing all week for our
Arch Play! Rain or shine, we will not be de-
terred from our glorious endeavor (but bring
an umbrella in case we run out of room under
the arch). Reminder: 5PM @ Blair Arch!
See you there! P.S. We added Pirates of the
Caribbean to our set list in case you needed
another reason to come...
Gold Output
Blair Arch
Before Second Fine-tuning
Princeton University
After Second Fine-tuning
Blair Arch

Table 6: Sample generated output of the SQuAD-based
model before and after being fine-tuned on the Princeton
email dataset.

expected, GPT-2 Large does not always outperform
GPT-2 Medium. This may be resolved by choosing
a better set of hyperparameters or by choosing the
model checkpoint at a later point in training.

Small Medium Large
Base 0.00 0.00 0.01
S 0.40 0.49 0.45
S + P 0.77 0.80 0.79
E 0.10 0.12 0.13
E + P 0.74 0.77 0.75

Table 7: F1 scores of models of different sizes of GPT-2,
before and after each fine-tuning stage. Base refers to
the pre-trained model before any fine-tuning, S, E, P
refer to fine-tuning on SQuAD, Enron email corpus, and
Princeton email dataset, respectively.

6 Conclusion

In this paper, we propose a double fine-tuning
method for downstream tasks with limited avail-
ability for annotated data. In particular, we train a
novel email content extraction model by first fine-
tuning it on two different datasets: one with a simi-
lar task (extractive QA) and the other with a similar
data domain (email). Both the task-adaptive and
the domain-adaptive models prove to be effective
at aligning the pre-trained base model for the pur-
pose of the downstream task, but the task-adaptive
approach is observed to perform slightly better.

7 Future Work

One possible future work would be to incorporate
an Optical Character Recognition (OCR) process
to parse the text in image attachments in the emails.
During data preprocessing, we observed that a large
number of the emails contained image attachments
(posters, banners, etc.) that summarize the details
of the event. Instead of only parsing the email
body, we could consider adding an additional OCR
model to parse the text from images and append to
the training input.

Another direction of future research would be
to modify the model to support different types of
emails (e.g., asking for survey participants or re-
ceiving applications for positions). These emails
are not compatible with the current setup of the
model, but would be beneficial to be included in
a digest. Broadening the scope of information to
process, however, may make the task significantly
difficult and impact the model performance.
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A Appendix

A.1 First Fine-tuning

Figure 3: Training loss when fine-tuning GPT-2 Small
(blue), GPT-2 Medium (gray), and GPT-2 Large (or-
ange) on SQuAD.

Figure 4: Training loss when fine-tuning GPT-2 Small
(yellow), GPT-2 Medium (pink), and GPT-2 Large (pur-
ple) on Enron email corpus.

Figure 5: Evaluation loss when fine-tuning GPT-2 Small
(blue), GPT-2 Medium (gray), and GPT-2 Large (or-
ange) on SQuAD.

Figure 6: Evaluation loss when fine-tuning GPT-2 Small
(yellow), GPT-2 Medium (pink), and GPT-2 Large (pur-
ple) on Enron email corpus.



A.2 Second Fine-tuning

Figure 7: Training loss when fine-tuning SQuAD-based
GPT-2 Small (green), GPT-2 Medium (yellow), GPT-2
Large (orange) and Enron-based GPT-2 Small (blue),
GPT-2 Medium (gray), GPT-2 Large (pink) on Princeton
email dataset.

Figure 8: Perplexity (PPL) when fine-tuning SQuAD-
based GPT-2 Small (green), GPT-2 Medium (yellow),
GPT-2 Large (orange) and Enron-based GPT-2 Small
(blue), GPT-2 Medium (gray), GPT-2 Large (pink) on
Princeton email dataset.

Figure 9: Evaluation loss when fine-tuning SQuAD-
based GPT-2 Small (green), GPT-2 Medium (yellow),
GPT-2 Large (orange) and Enron-based GPT-2 Small
(blue), GPT-2 Medium (gray), GPT-2 Large (pink) on
Princeton email dataset.

Figure 10: F1 score when fine-tuning SQuAD-based
GPT-2 Small (green), GPT-2 Medium (yellow), GPT-2
Large (orange) and Enron-based GPT-2 Small (blue),
GPT-2 Medium (gray), GPT-2 Large (pink) on Princeton
email dataset.



A.3 Sample Generations

Email
Do you like laughing? Then see 15 of Prince-
ton’s funniest ex-gifted children in the annual
Triangle Spring Show! There will be crys-
tal magic, foot fetishes, sports betting, How-
to-tutorials, superheroes, babies, bees?? and
of course sing-songy jokes that’ll knock your
socks off! The show is in the Class of 1970
Theatre, Whitman College. Tickets can be
found at: tickets.princeton.edu
Gold Output
Class of 1970 Theatre, Whitman College
Before Second Fine-tuning
Triangle Spring Show
After Second Fine-tuning
Whitman College
Email
The University Press Club cordially invites
you to attend the Press Club’s annual Bill
Rukeyser’54 lecture led by Professor Chan-
ning Joseph (she/he) on the theme "Queer
Black Histories." The lecture will be held on
April 27th, at 7:00 pm in 100 Arthur Lewis Au-
ditorium in Robertson Hall. Professor Chan-
ning Joseph is an award-winning journalist
with two decades of experience covering race,
poverty, social justice and other topics in the
U.S. and abroad. Thank you for your attention,
and we hope to see you on April 27th.
Gold Output
Professor Channing Joseph
Before Second Fine-tuning
PRESS CLUB ANNUAL BRADSHAH
After Second Fine-tuning
Professor Channing Joseph

Table 8: Sample generated outputs before and after
a SQuAD-based (above) and an Enron-based (below)
GPT-2 Medium model being fine-tuned on the Princeton
email dataset.


