
APPLICATIONS OF POLYNOMIAL METHODS

SIMON PARK

Abstract. Throughout the semester, we have seen the polynomial method being applied
to various problems. Here, we review its application on the Kakeya Problem with a more
thorough discussion about why polynomials were effective at solving the problem. Then
using the same method, we approach other problems in combinatorial geometry: Joints
Problem and Nikodym Problem. We also draw a connection between the results in these
problems with the Reed-Muller code, another application of the polynomial method.
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1. Review of Polynomial Methods

1.1. Finite Field Kakeya Conjecture. We briefly review some of the definitions and
terminologies related to the Finite Field Kakeya Conjecture.

Definition 1. Let F be a field. A set L ⊂ Fn is called a line if L can be expressed as
L = {at+ b : t ∈ F} for some a, b ∈ Fn and a ̸= 0.

Definition 2. Let Fq be a finite field. A set K ⊂ Fn
q is called a Kakeya set if for any

a ∈ Fn
q \ {0}, there is a line La ∋ a such that La ⊂ K; that is, there is a b ∈ Fn

q such that
{at+ b : t ∈ Fq} ⊂ K.
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Conjecture 3 (Finite Field Kakeya Conjecture). If K ⊂ Fn
q is a Kakeya set, then |K| ≥ cnq

n

where cn is a constant that only depends on n.

1.2. Attempts Without Polynomials. In class, we have seen two methods that ap-
proached the Finite Field Kakeya Conjecture using incidence geometry: the Bush Method
and the Hairbrush Method. Here, we reproduce Bourgain’s Bush Method to compare with
the polynomial method.

Theorem 4 ([2], [4]). If K ⊂ Fn
q is a Kakeya set, then |K| ≥ 1

2
q

n+1
2 .

Proof. Let L1, · · · , Lk be distinct, non-parallel lines contained in K and let L be the union
of these lines. By direct calculation, k ≥ qn−1. By the Pigeonhole Principle, there is a
point p ∈ L that is on at least kq |L|−1 of these lines. These lines are disjoint except at p.
Therefore,

(q − 1) · kq |L|−1 ≤ |L|
By rearranging the terms, we get

|K| ≥ |L| ≥ (kq(q − 1))1/2 ≥ (qn−1(q − 1)2)1/2 ≥ q
n−1
2 · (q − 1) ≥ 1

2
q

n+1
2

□

1.3. Polynomial Methods. Here, we reproduce Dvir’s Polynomial Method, first presented
in [1] and simplified in [2]. The following lemmas were proven in class and will be presented
here without proof.

Definition 5. When F is a field, PolyD(Fn) is the set of polynomials in n variables, with
coefficients in F and with total degree at most D.

Lemma 6. Let F be a field. For any n ≥ 2, for any finite set S ⊂ Fn, there is a non-zero

polynomial that vanishes on S with degree ≤ n |S|1/n.

Lemma 7. Let F be a field. If P ∈ PolyD(F) and if P vanishes at D + 1 points, then P is
the zero polynomial.

Lemma 8. Let F be a field. If P ∈ PolyD(Fn) and if P vanishes at D + 1 points on a line
L ⊂ Fn, then P vanishes at every point of L.

Lemma 9. If P ∈ PolyD(Fn
q ), P vanishes everywhere, and D < q, then P is the zero

polynomial.

The following theorem proves the Finite Field Kakeya Conjecture 3.

Theorem 10. If K ⊂ Fn
q is a Kakeya set, then |K| ≥ (2n)−nqn.

Proof. Assume to the contrary that K ⊂ Fn
q is a Kakeya set with |K| < (2n)−nqn. By

Lemma 6, there is a non-zero polynomial P that vanishes on K with degree ≤ n |K|1/n < q.
Let D be the degree of P and decompose P into P = PD + Q where PD is the sum of all
monomials of degree D and where Q has degree < D. Fix some non-zero a ∈ Fn

q . Choose b
so that the line {at+ b : t ∈ Fq} is contained in K. Then the polynomial R(t) := P (at+ b)
in one variable has degree ≤ D and vanishes on every t ∈ Fq. By Lemma 7, R is the zero
polynomial. Notice that the coefficient of tD in R is exactly PD(a) and must be zero. This
holds for any a ̸= 0. Notice that PD(0) is also zero because it only contains monomials of
degree D ≥ 1. Lemma 9 gives the desired contradiction. □



APPLICATIONS OF POLYNOMIAL METHODS 3

1.4. Discussion. In section 1.2, we saw an example of a method using ideas from incidence
geometry. Other similar proofs also rely on the Pigeonhole Principle. Using the principle,
they first find a lower bound on the number of lines contained in an arbitrary Kakeya set.
The lower bound is proportional to the size of the space (qn) and inversely proportional to
the size of the Kakeya set (|K|). The size of the Kakeya set is then proportional to the
number of these lines. Combining the two results means that the square of the size of the
Kakeya set (|K|2) is proportional to the size of the space (qn). Even with slight modifica-
tions or improvements to the method, the lower bound of the dimension of a Kakeya set is
approximately half of the dimension of the space.

Then what is so special about polynomials? [2] notes that the dimension of PolyD(Fn
q )

is on the same order of growth as Dn, which is surprisingly large. This means that there
is a lot of polynomials to choose from. This extent of freedom allows us to choose a poly-
nomial that vanishes on a finite set in Lemma 6 with a very small degree. On the other
hand, once fixed to a line, a polynomial operates very rigidly: a non-zero polynomial of
degree D can vanish at up to D points on a given line. This means that the the polyno-
mial we chose in Lemma 6 cannot have too small of a degree, without forcing it to be a zero
polynomial. This discrepancy is where the Polynomial Method draws the desired conclusion.

[6] also gives a geometric interpretation to the polynomial method. The zero set of a poly-
nomial can be interpreted as a hypersurface in the finite field. With this model, we can
reinterpret the lemmas above. Lemma 6 says that ’small’ sets in the finite field can be cap-
tured by hypersurfaces of low-degree polynomials. Lemma 7 says that the hypersurface of
a polynomial is either very small if the degree of the polynomial is non-zero (at most equal
to the degree) or very large if the degree is zero (the entire space). Lemma 8 describes how
rigid a line is: as soon as more than d points of a line is contained in the hypersurface defined
by a degree d polynomial, the entire line ”snaps into place” and is completely contained in
the surface.

In the following sections, we will discuss two other problems in combinatorial geometry
and how polynomial methods can be applied to solve them.

2. Joints Problem and Polynomial Methods

2.1. Joints Problem.

Definition 11. Let L be a set of lines in R3. A point in R3 is called a joint of L if it lies in
three non-coplanar lines of L.

The Joints Problem asks for the maximal number of joints defined by L lines. Let us first
consider a very simple example. Consider S = [1, N ]× [1, N ]× [1, N ] and all the integer grid
lines passing through S that are parallel to one of the three axes. That is, consider all lines
of the form

xi1 = j1, xi2 = j2 where i1, i2 ∈ {1, 2, 3}, j1, j2 ∈ {1, 2, · · · , N}

There are in total 3N2 lines. But notice that every integer point in S is a joint. Therefore,
there are in total N3 joints. If we let L = 3N2 be the number of lines, we have approximately
L3/2 joints. People have been trying to find an example of a set of lines that contain more
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joints (exponent greater than 3/2), but to little success. This led to the following conjecture.

Conjecture 12. If L is a set of lines in R3, then the number of joints of L is at most c |L|3/2
where c is a constant.

If the conjecture above is true, then the example of the lattice lines would be proven to
be the most optimal layout.

2.2. Polynomial Methods. Polynomials were first applied to the Joints Problem in [3],
and the method was later refined and simplified in [1], [2], and [5]

Lemma 13. If p is a joint of L, and if a smooth function g : R3 → R vanishes on all lines
of L, then ∇g vanishes at p.

Proof. Since p is a joint of L, it lies in three non-coplanar lines ℓ1, ℓ2, ℓ3 ∈ L. Let u1, u2, u3 be
the directional vectors for these lines. That is, for i = 1, 2, 3, let ui ∈ R3 be a vector such that
ℓi = {p+ tui : t ∈ R}. Since g vanishes on the three lines, the polynomial hi(t) := g(p+ tui)
is identically zero. In particular, the coefficient of t in this polynomial is exactly ⟨∇g(p), ui⟩
and is zero. Since the three lines ℓ1, ℓ2, ℓ3 are not coplanar, the directional vectors u1, u2, u3

are linearly independent, and therefore, ∇g(p) = 0 □

Lemma 14. If there are J > 0 joints of a set L of lines in R3, then at least one of the lines
contains no more than 3J1/3 joints.

Proof. Assume to the contrary that each of the lines contains at least 3J1/3 joints. Let g be
a lowest degree non-zero polynomial that vanishes at every joint of L. Since g has at least
one zero, it is trivial that the degree of g is non-zero. Also, by Lemma 6, the degree of g is
at most 3J1/3. Then by Lemma 8, g vanishes on all points of every line of L.

By Lemma 13, ∇g vanishes on all joints. This means that each of the three partial deriva-
tives of g is a polynomial that vanishes on all joints. But it is easy to check that if g is a
non-zero polynomial with non-zero degree, g has at least one non-zero partial derivative of
degree strictly less than the degree of g. This goes against the assumption that g was chosen
to have the minimal degree out of all polynomials that vanish on the joints. □

We are now ready to solve the Joints Problem.

Theorem 15. If L is a set of lines in R3, then the number of joints of L is at most (3 |L|)3/2.

Proof. Let JL be the maximum number of joints that can be formed by L lines. It is clear
that JL is an increasing function of L. Let L be a set of L lines in R3. By Lemma 14, we

know that one of the lines contains at most 3J
1/3
L of the joints. The number of joints not on

this line is at most JL−1. We can then use recursion to upper bound JL:

JL ≤ JL−1 + 3J
1/3
L ≤ JL−2 + 3J

1/3
L−1 + 3J

1/3
L ≤ JL−2 + 2 · 3J1/3

L ≤ · · · ≤ L · 3J1/3
L

Rearranging the inequality above gives J
2/3
L ≤ 3L which is the desired result. □
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3. Nikodym Problem and Polynomial Methods

3.1. Finite Field Nikodym Problem.

Definition 16. Let Fq be a finite field. A set N ⊂ Fn
q is called a Nikodym set if for any

p ∈ Fn
q , there is a line Lp ∋ p such that Lp \ {p} ⊂ N .

Just like the Finite Field Kakeya Problem, the Finite Field Nikodym Problem asks for the
lower bound of the dimension of an arbitrary Nikodym set.

3.2. Polynomial Methods. By applying a method very similar to the one we used in 1.3,
we can easily solve the Finite Field Nikodym Problem.

Theorem 17 ([1], simplified in [2]). If N ⊂ Fn
q is a Nikodym set, then |N | ≥ (3n)−nqn.

Proof. Proof by contradiction. Assume |N | < (3n)−nqn. By Lemma 6, we can find a non-

zero polynomial P that vanishes on N with degree ≤ n |N |1/n ≤ 1
3
q < q − 1 for any q ≥ 2.

Fix a point p ∈ Fn
q . By the definition of a Nikodym set, there is a line Lp passing through p

such that Lp \ {p} ⊂ N . Then the polynomial P vanishes on q− 1 points on Lp. By Lemma
8, P vanishes on the entire line. In particular, P vanishes on p. Since this holds for any
p ∈ Fn

q , P vanishes everywhere. Then Lemma 9 gives the desired contradiction. □

3.3. Connection to the Error-Correcting Codes. In class, we discussed how polynomi-
als are used in error-correcting codes, a method to encrypt information such that the original
message can be reconstructed even with certain percentage of data corruption. One example
was the Reed-Muller code. The message we are trying to send is a list of (D + 1)n elements
of Fq where D < q and n ≤ 1. We think of the message as a function g : {0, · · · , D}n → Fq.
We present the following lemma from [2] without proof.

Lemma 18. If D < q, then for any function g : {0, · · · , D}n → Fq, there is a unique
polynomial P : Fn

q → Fq such that P = g on {0, · · · , D}n and Degxi
P ≤ D for each

i = 1, · · · , n.

The proof of the lemma describes how to construct P from a given g within polynomial
time. The essence of the Reed-Muller code is to send the values of P , not just the values of
g. When we send the values of this polynomial extension, it is known that we can recover
the original message efficiently even when approximately half of the message is corrupted.

In this section, we discuss how the ideas from error-correcting codes are related to the proofs
of the Nikodym Problem and the Kakeya Problem. Assume we are working with a Nikodym
set N ⊂ Fn

q . Also assume that D is an integer such that nD < q− 1. The Reed-Muller code
in Lemma 18 takes as input a function g : {0, · · · , D}n → Fq and constructs a polynomial
P : Fn

q → Fq with degree at most D in each coordinate. The key observation is that the
target polynomial is uniquely determined by the values on N . Indeed, fix a point p ∈ Fn

q .
Then by the definition of a Nikodym set, there is a line Lp ∋ p such that Lp \ {p} ⊂ N . The
polynoimal P has degree at most nD < q − 1, so when we fix the values of P on Lp \ {p},
Lemma 8 guarantees that there is a unique polynomial with the given values. In particular,
we can recover P on the point p. Since this holds for any given p ∈ Fn

q , we see that the
Reed-Muller code gives an injection:

Fcn({0, · · · , D}n,Fq) → Fcn(N,Fq)
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This gives us a lower bound on the size of N : |N | ≥ (D + 1)n. Notice that we are allowed
to choose any D as long as nD < q − 1. This shows that the lower bound can be improved
to roughly n−nqn, which is precisely the result of Theorem 17. Therefore, in some sense, the
Reed-Muller code solves the Finite Field Nikodym Problem.
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